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Abstract. In term rewriting, reachability analysis is concerned with the
problem of deciding whether or not one term is reachable from another by
rewriting. Reachability analysis has several applications in termination
and confluence analysis of rewrite systems. We give a unified view on
reachability analysis for rewriting with and without conditions by means
of what we call reachability constraints. Moreover, we provide several
techniques that fit into this general framework and can be efficiently
implemented. Our experiments show that these techniques increase the
power of existing termination and confluence tools.
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1 Introduction

Reachability analysis for term rewriting [6] is concerned with the problem of,
given a rewrite system R, a source term s and a target term t, deciding whether
the source reduces to the target by rewriting, which is usually written s −→∗R t.
A useful generalization of this problem is the “(un)satisfiability” of the following
reachability problem: given terms s and t containing variables, decide whether
there is a substitution σ such that sσ −→∗R tσ or not. This problem, also called
(in)feasibility by Lucas and Guitiérrez [11], has various applications in termina-
tion and confluence analysis for plain and conditional rewriting.

This can be understood as a form of safety analysis, as illustrated below.

Example 1. Let R be a term rewrite system consisting of the following rules for
division (where s stands for “successor”):

x − 0→ x s(x )− s(y)→ x − y 0÷ s(y)→ 0

s(x )÷ s(y)→ s((x − y)÷ s(y)) x ÷ 0→ err("division by zero")

The question “Can division yield an error?” is naturally formulated as the sat-
isfiability of reachability from x ÷ y to err(z ). Unsurprisingly, the solution

σ = [y 7→ 0, z 7→ "division by zero"]
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shows that it is actually possible to obtain an error.

In termination analysis we are typically interested in unsatisfiability of reach-
ability and can thereby rule out certain recursive calls as potential source of non-
termination. For confluence analysis of conditional term rewriting, infeasibility
is crucial: some other techniques do not apply before critical pairs are shown
infeasible, and removal of infeasible rules simplifies proofs.

In this work we provide a formal framework that allows us to uniformly speak
about (un)satisfiability of reachability for plain and conditional rewriting, and
give several techniques that are useful in practice.

More specifically, our contributions are as follows:

• We introduce the syntax and semantics of reachability constraints (Section 3)
and formulate their satisfiability problem. We recast several concrete tech-
niques for reachability analysis in the resulting framework.

• We present a new, simple, and efficient technique for reachability analysis
based on what we call the symbol transition graph of a rewrite system (Sec-
tion 4.1) and extend it to conditional rewriting (Section 5.2).

• Additionally, we generalize the prevalent existing technique for term rewrit-
ing to what we call look-ahead reachability (Section 4.2) and extend it to the
conditional case (Section 5.3).

• Then, we present a new result for conditional rewriting that is useful for
proving conditional rules infeasible (Section 5.1).

• Finally, we evaluate the impact of our work on existing automated tools
NaTT [16] and ConCon [13] (Section 6).

2 Preliminaries

In the remainder, we assume some familiarity with term rewriting. Nevertheless,
we recall required concepts and notations below. For further details on term
rewriting, we refer to standard textbooks [3,14].

Throughout the paper F denotes a set of function symbols with associated
arities, and V a countably infinite set of variables (so that fresh variables can
always be picked) such that F ∩ V = ∅. A term is either a variable x ∈ V or of
the form f(t1, . . . , tn), where n is the arity of f ∈ F and the arguments t1, . . . , tn
are terms. The set of all terms over F and V is denoted by T (F ,V). The set
of variables occurring in a term t is denoted by Var(t). The root symbol of a
term t = f(t1, . . . , tn) is f and denoted by root(t). When we want to indicate
that a term is not a variable, we sometimes write f(...), where “...” denotes an
arbitrary list of terms.

A substitution is a mapping σ : V → T (F ,V). Given a term t, tσ denotes
the term obtained by replacing every occurrence of variable x in t by σ(x). The
domain of a substitution σ is Dom(σ) := {x ∈ V | xσ 6= x}, and σ is idempotent
if Var(xσ) ∩ Dom(σ) = ∅ for every x ∈ V. A renaming is a bijection α : V → V.
Two terms s and t are unifiable if sσ = tσ for some substitution σ, which is
called a unifier of s and t.
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A context is a term with exactly one occurrence of the special symbol �. We
write C[t] for the term resulting from replacing � in context C by term t.

A rewrite rule is a pair of terms, written l → r, such that the variable
conditions l /∈ V and Var(l) ⊇ Var(r) hold. By a variant of a rewrite rule we
mean a rule that is obtained by consistently renaming variables in the original
rule to fresh ones. A term rewrite system (TRS) is a set R of rewrite rules. A
function symbol f ∈ F is defined in R if f(...)→ r ∈ R, and the set of defined
symbols in R is DR := {f | f(...)→ r ∈ R}. We call f ∈ F \DR a constructor.

There is an R-rewrite step from s to t, written s −→R t, iff there exist a
context C, a substitution σ, and a rule l → r ∈ R such that s = C[lσ] and

t = C[rσ]. We write s
ε−→R t if C = � (called a root step), and s

>ε−→R t (called
a non-root step), otherwise. We say a term s0 is R-terminating if it starts no
infinite rewrite sequence s0 →R s1 →R s2 →R · · · , and say R is terminating if
every term is R-terminating.

For a relation� ⊆ A×A, we denote its transitive closure by�+ and reflexive
transitive closure by �∗. We say that a1, . . . , an ∈ A are joinable (meetable) at
b ∈ A with respect to � if ai�∗ b (b�∗ ai) for every i ∈ {1, . . . , n}.

3 Reachability Constraint Satisfaction

In this section we introduce the syntax and semantics of reachability constraints,
a framework that allows us to unify several concrete techniques for reachability
analysis on an abstract level. Reachability constraints are first order formulas3

with a single binary predicate symbol whose intended interpretation is reacha-
bility by rewriting with respect to a given rewrite system.

Definition 1 (Reachability Constraints). Reachability constraints are given
by the following grammar (where s, t ∈ T (F ,V) and x ∈ V)

φ, ψ, . . . ::= > | ⊥ | s −→→ t | φ ∨ ψ | φ ∧ ψ | ¬φ | ∀x. φ | ∃x. φ

To save some space, we use conventional notation like
∧
i∈I φi and ∃x1, . . . , xn. φ.

As mentioned above, the semantics of reachability constraints is defined with
respect to a given rewrite system. In the following we define satisfiability of con-
straints with respect to a TRS. (This definition will be extended to conditional
rewrite systems in Section 5.)

Definition 2 (Satisfiability). We define4 inductively when a substitution σ
satisfies a reachability constraint φ modulo a TRS R, written σ |=R φ, as follows:

– σ |=R >;
– σ |=R s −→→ t if sσ −→∗R tσ;

3 While in general we allow an arbitrary first-order logical structure for formulas, for
the purpose of this paper, negation and universal quantification are not required.

4 It is also possible to give a model-theoretic account for these notions. However, the
required preliminaries are outside the scope of this paper.
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– σ |=R φ ∨ ψ if σ |=R φ or σ |=R ψ;
– σ |=R φ ∧ ψ if σ |=R φ and σ |=R ψ;
– σ |=R ¬φ if σ |=R φ does not hold;
– σ |=R ∀x. φ if σ′ |=R φ for every σ′ that coincides with σ on V \ {x}.
– σ |=R ∃x. φ if σ′ |=R φ for some σ′ that coincides with σ on V \ {x}.

We say φ and ψ are equivalent modulo R, written φ ≡R ψ, when σ |=R φ iff
σ |=R ψ for all σ. We say φ and ψ are (logically) equivalent, written φ ≡ ψ,
if they are equivalent modulo any R. We say φ is satisfiable modulo R, written
SATR(φ), if there is a substitution σ that satisfies φ modulo R, and call σ a
solution of φ with respect to R.

Checking for satisfiability of reachability constraints is for example useful for
proving termination of term rewrite systems via the dependency pair method [2],
or more specifically in dependency graph analysis. For the dependency pair
method, we assume a fresh marked symbol f ] for every f ∈ DR, and write
s] to denote the term f ](s1, . . . , sn) for s = f(s1, . . . , sn). The set of dependency
pairs of a TRS R is DP(R) :=

{
l] → r]

∣∣ l→ C[r] ∈ R, r /∈ V, root(r) ∈ DR
}

.
The standard definition of the dependency graph of a TRS [2] can be recast
using reachability constraints as follows:

Definition 3 (Dependency Graph). Given a TRS R, its dependency graph
DG(R) is the directed graph over DP(R) where there is an edge from l] → s]

to t] → r] iff SATR(s] −→→ t]α), where α is a renaming of variables such that
Var(t]α) ∩ Var(s]) = ∅.

The nodes of the dependency graph correspond to the possible recursive calls
in a program (represented by a TRS), while its edges encode the information
which recursive calls can directly follow each other in arbitrary program execu-
tions. This is the reason why dependency graphs are useful for investigating the
termination behavior of TRSs, as captured by the following result.

Theorem 1 ([10]). A TRS R is terminating iff for every strongly connected
component C of an over approximation of DG(R), there is no infinite chain
s0

ε−→C t0 −→∗R s1
ε−→C t1 −→∗R · · · where every ti is R-terminating.

Example 2. Consider the TRS R of Toyama [15] consisting of the single rule
f(0, 1, x )→ f(x , x , x ). Its dependency graph DG(R) consists of the single node:

f](0, 1, x )→ f](x , x , x ) (1)

To show R terminates it suffices to show that DG(R) has no edge from (1) back
to (1), that is, the unsatisfiability of the constraint (with a fresh variable x ′)

f](x , x , x ) −→→ f](0, 1, x ′) (2)

The most popular method today for checking reachability during dependency
graph analysis is unifiability between the target and an approximation of the
topmost part of the source (its “cap”) that does not change under rewriting,
which is computed by the tcapR function [9].
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Definition 4 (tcap). Let R be a TRS. We recursively define tcapR(t) for a
given term t as follows: tcapR(x) is a fresh variable if x ∈ V; tcapR(f(t1, . . . , tn))
is a fresh variable if u = f(tcapR(t1), . . . , tcapR(tn)) unifies with some left-hand
side of the rules in R; otherwise, it is u.

The standard way of checking for nonreachability that is implemented in
most tools is captured by of the following proposition.

Proposition 1. If tcapR(s) and t are not unifiable, then s −→→ t ≡R ⊥.

Example 3. Proposition 1 cannot prove the unsatisfiability of (2) of Example 2,
since the term cap of the source tcapR(f](x , x , x )) = f](z , z ′, z ′′), where z , z ′, z ′′

are fresh variables, is unifiable with the target f](0, 1, x ′).

4 Reachability in Term Rewriting

In this section we introduce some techniques for analyzing (un)satisfiability of
reachability constraints. The first one described below formulates an obvious
observation: no root rewrite step is applicable when starting from a term whose
root is a constructor.

Definition 5 (Non-Root Reachability). For terms s = f(...) and t = g(...),

we define the non-root reachability constraint s
>ε−−→→ t as follows:

– s
>ε−−→→ t = ⊥ if f 6= g, and

– f(s1, . . . , sn)
>ε−−→→ f(t1, . . . , tn) = s1 −→→ t1 ∧ · · · ∧ sn −→→ tn.

The intention of non-root reachability constraints is to encode zero or more
steps of non-root rewriting, in the following sense.

Lemma 1. For s, t /∈ V, sσ
>ε−→∗R tσ iff σ |=R s

>ε−−→→ t.

Proof. The claim vacuously follows if root(s) 6= root(t). So let s = f(s1, . . . , sn)

and t = f(t1, . . . , tn). We have f(s1, . . . , sn)σ
>ε−→∗R f(t1, . . . , tn)σ iff s1σ −→∗R t1σ,

. . . , snσ −→∗R tnσ iff σ |=R s1 −→→ t1 ∧ · · · ∧ sn −→→ tn. ut

Combined with the observation that no root step is applicable to a term
whose root symbol is a constructor, we obtain the following reformulation of a
folklore result that reduces reachability to direct subterms.

Proposition 2. If s = f(...) with f /∈ DR and t /∈ V, then s −→→ t ≡R s
>ε−−→→ t.

Proposition 2 is directly applicable in the analysis of dependency graphs.

Example 4. Consider again the constraint f](x , x , x ) −→→ f](0, 1, x ′) from Exam-
ple 2. Since f] is not defined in R, Proposition 2 reduces this constraint to

f](x , x , x )
>ε−−→→ f](0, 1, x ′), that is,

x −→→ 0 ∧ x −→→ 1 ∧ x −→→ x ′ (3)
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Fig. 1: Example symbol transition graphs.

4.1 Symbol Transition Graphs

Here we introduce a new, simple and efficient way of overapproximating reacha-
bility by tracking the relation of root symbols of terms according to a given set
of rewrite rules. We first illustrate the intuition by an example.

Example 5. Consider a TRS R consisting of rules of the following form:

f(...)→ g(...) g(...)→ c(...) h(...)→ x

Moreover, suppose s −→∗R t. Then we can make the following observations:

– If root(s) = c, then root(t) = c since non-root steps preserve the root symbol
and no root steps are applicable to terms of the form c(...).

– If root(s) = g, then root(t) ∈ {g, c} since non-root steps preserve the root
symbol and the only possible root step is g(...)→ c(...).

– If root(s) = f, then root(t) ∈ {f, g, c} by the same reasoning.
– If root(s) = h, then t can be any term and root(t) can be arbitrary.

This informal argument is captured by the following definition.

Definition 6 (Symbol Transition Graphs). The symbol transition graph
SG(R) of a TRS R over signature F is the graph 〈F ,�R〉, where f �R g iff
R contains a rule of form f(...)→ g(...) or f(...)→ x with x ∈ V.

The following result tells us that for non-variable terms the symbol transition
graph captures the relation between the root symbols of root rewrite steps.

Lemma 2. If s
ε−→R t then t ∈ V or root(s)�R root(t).

Proof. By assumption there exist l → r ∈ R and σ such that s = lσ and
rσ = t. If r ∈ V then either t ∈ V or root(s) = root(l) �R root(t). Otherwise,
root(s) = root(l)�R root(r) = root(t). ut

Since every rewrite sequence is composed of subsequences that take place
entirely below the root (and hence do not change the root symbol) separated by
root steps, we can extend the previous result to rewrite sequences.

Lemma 3. If s = f(...) −→∗R g(...) = t then f �∗R g.
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Proof. We prove the claim for arbitrary s and f by induction on the derivation
length of s −→∗R t. The base case is trivial, so consider s −→R s′ −→n

R tσ. Since
t /∈ V, we have f ′ ∈ F with s′ = f ′(...). Thus the induction hypothesis yields
f ′ �∗R g. If s

ε−→R s′ then by Lemma 2 we conclude f �R f ′ �∗R g, and
otherwise f = f ′�∗R g. ut

It is now straightforward to derive the following from Lemma 3.

Corollary 1. If f �∗R g does not hold, then f(...) −→→ g(...) ≡R ⊥.

Example 6. The symbol transition graph for Example 5 is depicted in Fig. 1(a).
By Corollary 1 we can conclude, for instance, g(...) −→→ f(...) is unsatisfiable.

Corollary 1 is useful for checking (un)satisfiability of s −→→ t, only if neither
s nor t is a variable. However, the symbol transition graph is also useful for
unsatisfiability in the case when s and t may be variables.

Proposition 3. If SATR(x −→→ t1 ∧ · · · ∧ x −→→ tn) for t1 = g1(...), . . . , tn =
gn(...), then g1, . . . , gn are meetable with respect to �R.

Proof. By assumption there is a substitution σ such that xσ −→∗R t1σ, . . . ,
xσ −→∗R tnσ. Clearly xσ ∈ V is not possible. Thus, suppose xσ = f(...) for
some f . Finally, from Lemma 3, we have f �∗R g1, . . . , f �∗R gn and thereby
conclude that g1, . . . , gn are meetable at f . ut

The dual of Proposition 3 is proved in a similar way, but with some special
care to ensure xσ ∈ V.

Proposition 4. If SATR(s1 −→→ x ∧ · · · ∧ sn −→→ x) for s1 = f1(...), . . . ,
sn = fn(...), then f1, . . . , fn are joinable with respect to �R.

Example 7 (Continuation of Example 4). Due to Proposition 3, proving (3) un-
satisfiable reduces to proving that 0 and 1 are not meetable with respect to�R.
This is obvious from the symbol transition graph depicted in Fig. 1(b). Hence,
we conclude the termination of R.

Example 8. Consider the following extension of R from Example 2.

f(0, 1, x )→ f(x , x , x ) g(x , y) −→ x g(x , y) −→ y

The resulting system is not terminating [15]. The corresponding symbol transi-
tion graph is depicted in Fig. 1(c), where 0 and 1 are meetable, as expected.

4.2 Look-Ahead Reachability

Here we propose another method for overapproximating reachability, which even-
tually subsumes the tcap-unifiability method when target terms are linear. Note
that this condition is satisfied in the dependency graph approximation of left-
linear TRSs. Our method is based on the observation that any rewrite sequence
either contains at least one root step, or takes place entirely below the root. This
observation can be captured using our reachability constraints.
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Definition 7 (Root Narrowing Constraints). Let l → r be a rewrite rule
with Var(l) = {x1, . . . , xn}. Then for terms s and t not containing x1, . . . , xn,
the root narrowing constraint from s to t via l→ r is defined by

s l→r t := ∃x1, . . . , xn. s
>ε−−→→ l ∧ r −→→ t

We write s  R t for
∨
l→r∈R′ s l→r t, where R′ is a variant of R in which

variables occurring in s or t are renamed to fresh ones.

In the definition above, the intuition is that if there are any root steps inside
a rewrite sequence then we can pick the first one, which is only preceded by
non-root steps. The following theorem justifies this intuition.

Theorem 2. If s, t /∈ V, then s −→→ t ≡R s
>ε−−→→ t ∨ s R t.

Proof. Let s = f(s1, . . . , sn) and σ be a substitution. We show σ |=R s −→→ t

iff σ |=R s
>ε−−→→ t ∨ s  R t. For the “if” direction suppose the latter. If σ |=R

s
>ε−−→→ t, then t is of form f(t1, . . . , tn) and siσ −→∗R tiσ for every i ∈ {1, . . . , n},

and thus sσ −→∗R tσ. If σ |=R s  R t, then we have a renamed variant l → r
of a rule in R such that σ |=R s  l→r t. This indicates that there exists a
substitution σ′ that coincides with σ on V \ Var(l), and satisfies

– σ′ |=R s
>ε−−→→ l, that is, l = f(l1, . . . , ln) and siσ

′ −→∗R liσ
′;

– σ′ |=R r −→→ t, that is, rσ′ −→∗R tσ′.

In combination, we have sσ = sσ′
>ε−→∗R lσ′

ε−→R rσ′ −→∗R tσ′ = tσ.
Now consider the “only if” direction. Suppose that σ is an idempotent sub-

stitution such that sσ −→∗R tσ. We may assume idempotence, since from any
solution σ′ of s −→→ t, we obtain idempotent solution σ by renaming variables in
Var(s) ∪ Var(t) to fresh ones. We proceed by the following case analysis:

– No root step is involved: sσ
>ε−→∗R tσ. Then Lemma 1 implies σ |=R s

>ε−−→→ t.
– At least one root step is involved: there is a rule l→ r ∈ R and a substitution

θ such that sσ
>ε−→∗R lθ and rθ −→∗R tσ. Since variables in lθ must occur in

sσ (due to our assumptions on rewrite rules), we have lθ = lθσ since σ is

idempotent. Thus from Lemma 1 we have σ |=R s
>ε−−→→ lθ. Further, variables

in rθ must occur in lθ and thus in sθ, we also have rθσ = rθ −→∗R tσ, and
hence σ |=R rθ −→→ t. This concludes σ |=R s l→r t. ut

Proposition 2 is a corollary of Theorem 2 together with the following easy
lemma, stating that if the root symbol of the source term is not a defined symbol,
then no root step can occur.

Lemma 4. If c /∈ DR then c(...) R t ≡ ⊥.

Example 9. Consider the TRS R consisting of the following rules:

0 > x → false s(x ) > 0→ true s(x ) > s(y)→ x > y

Applying Theorem 2 once reduces the reachability constraint 0 > z −→→ true to
the disjunction of
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1. 0 > z
>ε−−→→ true,

2. ∃x . 0 > z
>ε−−→→ 0 > x ∧ false −→→ true

3. ∃x . 0 > z
>ε−−→→ s(x ) > 0 ∧ true −→→ true

4. ∃x , y . 0 > z
>ε−−→→ s(x ) > s(y) ∧ x > y −→→ true

Disjuncts 1, 3, and 4 expand to ⊥ by definition of
>ε−−→→. For disjunct 2, applying

Theorem 2 or Proposition 2 to false −→→ true yields ⊥.

Note that Theorem 2 can be applied arbitrarily often. Thus, to avoid nonter-
mination in an implementation, we need to control how often it is applied. For
this purpose we introduce the following definition.

Definition 8 (k-Fold Look-Ahead). We define the k-fold look-ahead trans-
formation with respect to a TRS R as follows:

LkR(s −→→ t) :=

{
LkR(s

>ε−−→→ t) ∨ s k
R t if k ≥ 1 and s, t /∈ V

s −→→ t otherwise

which is homomorphically extended to reachability constraints. Here,  k
R is de-

fined as in Definition 7, but k controls the number of root steps to be expanded:

s k
l→r t := ∃x1, . . . , xn. LkR(s

>ε−−→→ l) ∧ Lk−1R (r −→→ t)

It easily follows from Theorem 2 and induction on k that the k-fold look-
ahead preserves the semantics of reachability constraints.

Corollary 2. LkR(φ) ≡R φ.

The following results indicate that, whenever tcapR-unifiability (Proposi-
tion 1) proves s −→→ t unsatisfiable for linear t, L1R can also conclude it.

Lemma 5. Let s = f(s1, . . . , sn) and t /∈ V be a linear term, and suppose that
f(tcapR(s1), . . . , tcapR(sn)) does not unify with t or any left-hand side in R.
Then L1R(s −→→ t) ≡ ⊥.

Proof. By structural induction on s. First, we show L1R(s
>ε−−→→ t) ≡ ⊥. This

is trivial if root(t) 6= f . So let t = f(t1, . . . , tn). By assumption there is an
i ∈ {1, . . . , n} such that tcapR(si) does not unify with ti. Hence tcapR(si) can-
not be a fresh variable, and thus si is of the form g(u1, . . . , um) and tcapR(si) =
g(tcapR(u1), . . . , tcapR(um)) is not unifiable with any left-hand side inR. There-
fore, the induction hypothesis applies to si, yielding L1R(si −→→ ti) ≡ ⊥. This

concludes L1R(s
>ε−−→→ t) = L1R(s1 −→→ t1) ∧ · · · ∧ L1R(sn −→→ tn) ≡ ⊥.

Second, we show L1R(s  1
R t) ≡ ⊥. To this end, we show for an arbitrary

variant l→ r of a rule inR that L1R(s
>ε−−→→ l) ≡ ⊥. This is clear if root(l) 6= f . So

let l = f(l1, . . . , ln). By assumption there is an i ∈ {1, . . . , n} such that tcapR(si)
and li are not unifiable. By a similar reasoning as above the induction hypothesis

applies to si and yields L1R(si −→→ li) ≡ ⊥. This concludes L1R(s
>ε−−→→ l) ≡ ⊥. ut

Corollary 3. If tcapR(s) and t are not unifiable, then L1R(s −→→ t) ≡ ⊥.
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5 Conditional Rewriting

Conditional rewriting is a flavor of rewriting where rules are guarded by condi-
tions. On the one hand, this gives us a boost in expressiveness in the sense that
it is often possible to directly express equations with preconditions and that
it is easier to directly express programming constructs like the where-clauses
of Haskell. On the other hand, the analysis of conditional rewrite systems is
typically more involved than for plain rewriting.

In this section we first recall the basics of conditional term rewriting. Then,
we motivate the importance of reachability analysis for the conditional case.
Finally, we extend the techniques of Section 4 to conditional rewrite systems.

Preliminaries. A conditional rewrite rule l→ r ⇐ φ consists of two terms l /∈ V
and r (the left-hand side and right-hand side, respectively) and a list φ of pairs
of terms (its conditions). A conditional term rewrite system (CTRS for short) is
a set of conditional rewrite rules. Depending on the interpretation of conditions,
conditional rewriting can be separated into several classes. For the purposes of
this paper we are interested in oriented CTRSs, where conditions are interpreted
as reachability constraints with respect to conditional rewriting. Hence, from now
on we identify conditions 〈s1, t1〉, . . . , 〈sn, tn〉 with the reachability constraint
s1 −→→ t1 ∧ · · · ∧ sn −→→ tn, and the empty list with > (omitting “⇐ >” from
rules).

The rewrite relation of a CTRS is layered into levels: given a CTRS R and
level i ∈ N, the corresponding (unconditional) TRS Ri is defined recursively:

R0 := ∅
Ri+1 := {lσ → rσ | l→ r ⇐ φ ∈ R, σ |=Ri

φ}

Then the (conditional) rewrite relation at level i, written −→R,i (or −→i whenever
R is clear from the context), is the plain rewrite relation −→Ri

induced by the
TRS Ri. Finally, the induced (conditional) rewrite relation of a CTRS R is
defined by −→R :=

⋃
{−→i | i ≥ 0}. At this point Definition 2 is extended to the

conditional case in a straightforward manner.

Definition 9 (Level Satisfiability). Let R be a CTRS and φ a reachability
constraint. We say that a substitution σ satisfies φ modulo R at level i, whenever
σ |=R,i φ. If we are not interested in a specific satisfying substitution we say
that φ is satisfiable modulo R at level i and write SATR,i(φ) (or just SATi(φ)
whenever R is clear from the context).

5.1 Infeasibility

The main area of interest for reachability analysis in the conditional case is
checking for infeasibility. While a formal definition of this concept follows below,
for the moment, think of it as unsatisfiability of conditions. The two predominant
applications of infeasibility are: (1) if the conditions of a rule are unsatisfiable,
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the rule can never be applied and thus safely be removed without changing
the induced rewrite relation; (2) if the conditions of a conditional critical pair
(which arises from confluence analysis of CTRSs) are unsatisfiable, then it poses
no problem to confluence and can safely be ignored.

Definition 10 (Infeasibility). We say that a conditional rewrite rule l→ r ⇐
φ is applicable at level i with respect to a CTRS R iff SATR,i−1(φ). A set S of
rules is infeasible with respect to R when no rule in S is applicable at any level.

The next theorem allows us to remove some rules from a CTRS while checking
for infeasibility of rules.

Theorem 3. A set S of rules is infeasible with respect to a CTRS R iff it is
infeasible with respect to R \ S.

Proof. The ‘only if’ direction is trivial. Thus we concentrate on the ‘if’ direction.
To this end, assume that S is infeasible with respect to R\S, but not infeasible
with respect to R. That is, at least one rule in S is applicable at some level with
respect toR. Let m be the minimum level such that there is a rule l→ r ⇐ φ ∈ S
that is applicable at level m with respect to R. Now if m = 0 then l→ r ⇐ φ is
applicable at level 0 and thus SATR,0(φ), which trivially implies SATR\S,0(φ),
contradicting the assumption that all rules in S are infeasible with respect to
R\S. Otherwise, m = k+1 for some k ≥ 0 and since l→ r ⇐ φ is applicable at
level m we have SATR,k(φ). Moreover, the rewrite relations −→R,k and −→R\S,k
coincide (since all rules in S are infeasible at levels smaller than m by our choice
of m). Thus we also have SATR\S,k(φ), again contradicting the assumption that
all rules in S are infeasible with respect to R \ S. ut

The following example from the confluence problems data base (Cops)5 shows
that Theorem 3 is beneficial for showing infeasibility of conditional rewrite rules.

Example 10 (Cops 794). Consider the CTRS R consisting of the two rules:

a→ c⇐ f(a) −→→ f(b) f(b)→ b

The tcap-method does not manage to conclude infeasibility of the first rule,
since tcapR(f(a)) = x for some fresh variable x and thus unifies with f(b). The
reason for this result was that for computing tcapR we had to recursively (in a
bottom-up fashion) try to unify arguments of functions with left-hand sides of
rules, which succeeded for the left-hand side of the first rule and the argument a
of f(a), thereby obtaining f(x ) which, in turn, unifies with the left-hand side of
the second rule. But by Theorem 3 we do not need to consider the first rule for
computing the term cap and thus obtain tcap{f(b)→b}(f(a)) = f(a) which does
not unify with f(b) and thereby shows that the first rule is infeasible.

5 http://cops.uibk.ac.at/?q=ctrs+oriented

http://cops.uibk.ac.at/?q=794
http://cops.uibk.ac.at/?q=ctrs+oriented 
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Fig. 2: Inductive and plain symbol transition graph of Example 11.

5.2 Symbol Transition Graphs in the Presence of Conditions

In the presence of conditions in rules we replace Definition 6 by the following
inductive definition:

Definition 11 (Inductive Symbol Transition Graphs). The symbol tran-
sition graph SG(R) of a CTRS R over a signature F is the graph 〈F ,�R〉 where
�R is defined inductively by the following two inference rules:

f(...)→ x⇐ φ ∈ R ∀〈s, t〉 ∈ φ. s ∈ V ∨ t ∈ V ∨ root(s)�∗R root(t)

f �R g
g ∈ F

f(...)→ g(...)⇐ φ ∈ R ∀〈s, t〉 ∈ φ. s ∈ V ∨ t ∈ V ∨ root(s)�∗R root(t)

f �R g

The example below shows the difference between the symbol transition graph
for TRSs (which can be applied as a crude overapproximation also to CTRSs by
dropping all conditions) and the inductive symbol transition graph for CTRSs.

Example 11 (Cops 293). Consider the CTRS consisting of the three rules:

a→ b a→ c b→ c⇐ b −→→ c

The corresponding inductive symbol transition graph is depicted in Fig. 2(a)
and implies unsatisfiability of b −→→ c. Note that this conclusion cannot be drawn
from the plain symbol transition graph of the TRS obtained by dropping the
condition of the third rule, shown in Fig. 2(b).

The inductive symbol transition graph gives us a sufficient criterion for con-
cluding nonreachability with respect to a given CTRS, as shown in the following.

Lemma 6. If f(...) −→∗R g(...) then f �∗R g.

Proof. Let s = f(...) and u = g(...) and assume that s rewrites to u at level i, that
is, s −→∗i u. We prove the statement by induction on the level i. If i = 0 then we
are done, since −→0 is empty and therefore f(...) = s = u = g(...), which trivially
implies f �∗R g. Otherwise, i = j + 1 and we obtain the induction hypothesis
(IH) that s −→∗j t implies root(s) �∗R root(t) for arbitrary non-variable terms s
and t. We proceed to show that s −→∗i u implies f �∗R g by an inner induction
on the length of this derivation. If the derivation is empty, then f(...) = s =

http://cops.uibk.ac.at/?q=293
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u = g(...) and therefore trivially f �∗R g. Otherwise, the derivation is of the
shape s −→∗i t −→i u for some non-variable term t = h(...) and we obtain the
inner induction hypothesis that f �∗R h. It remains to show h �∗R g in order
to conclude the proof. To this end, consider the step t = C[lσ] −→i C[rσ] = u
for some context C, substitution σ, and rule l → r ⇐ φ ∈ R such that σ |=j φ.
Now, by IH, we obtain that s′ ∈ V or t′ ∈ V or root(s′) �∗R root(t′) for all
〈s′, t′〉 ∈ φ. Thus, by Definition 11, we obtain that root(lσ) �R root(rσ). We
conclude by a case analysis on the structure of the context C. If C is empty,
that is C = �, then h = root(lσ)�∗R root(rσ) = g and we are done. Otherwise,
h = root(t) = root(u) = g and therefore trivially h�∗R g. ut

Corollary 4. If f �∗R g does not hold, then f(...) −→→ g(...) ≡R ⊥.

5.3 Look-Ahead Reachability in the Presence of Conditions

In the following definition we extend our look-ahead technique from plain rewrit-
ing to conditional rewriting.

Definition 12 (Conditional Root Narrowing Constraints). Let l → r ⇐
φ be a conditional rewrite rule with Var(l) = {x1, . . . , xn}. Then for terms s
and t not containing x1, . . . , xn, the conditional root narrowing constraint from
s to t via l→ r ⇐ φ is defined by

s l→r⇐φ t := ∃x1, . . . , xn. s
>ε−−→→ l ∧ r −→→ t ∧ φ

We write s  R t for
∨
l→r⇐φ∈R′ s  l→r⇐φ t, where R′ is a variant of R in

which variables occurring in s or t are renamed to fresh ones.

And we obtain a result similar to Theorem 2.

Lemma 7. If s, t /∈ V, then s −→→ t ≡R s
>ε−−→→ t ∨ s R t.

Example 12 (Cops 793). Consider the CTRS R consisting of the two rules:

a→ a⇐ f(a) −→→ a f(x )→ a⇐ x −→→ b

To show infeasibility of the first rule we can safely remove it from R by Theo-
rem 3, resulting in the modified CTRSR′. Then we have to check SATR′(f(a) −→→ a)
which is made easier by the following chain of equivalences:

f(a) −→→ a ≡R′ f(a)
>ε−−→→ a ∨ f(a) f(x)→a⇐x�b a (by Lemma 7)

≡R′ f(a) f(x)→a⇐x�b a (by Definition 5)

≡R′ ∃x . f(a)
>ε−−→→ f(x ) ∧ a −→→ a ∧ x −→→ b (by Definition 12)

≡R′ ∃x . a −→→ x ∧ a −→→ a ∧ x −→→ b (by Definition 5)

Since satisfiability of the final constraint above implies SATR′(a −→→ b) and we
also have a 6�∗R b, we can conclude unsatisfiability of the original constraint by
Corollary 4 and hence that the first rule of R is infeasible.

http://cops.uibk.ac.at/?q=793
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Table 1: Experimental results for dependency graph analysis (TRSs).

Look-ahead

L0
R L1

R L2
R L3

R L8
R

None UNSAT 0 104 050 105 574 105 875 105 993
time (s) 33.96 38.98 38.13 39.15 116.52

Corollary 1 UNSAT 307 207 328 216 328 430 328 499 328 636
time (s) 38.50 42.71 42.72 43.00 66.82

6 Assessment

We implemented our techniques in the TRS termination prover NaTT [16]6 ver-
sion 1.8 for dependency graph analysis, and the CTRS confluence prover Con-
Con [13]7 version 1.7 for infeasibility analysis. In both cases we only need a
complete satisfiability checker, or equivalently, a sound unsatisfiability checker.
Hence, to conclude unsatisfiability of given reachability constraints, we apply
Corollary 2 with appropriate k together with a complete approximation of con-
straints. One such approximation is the symbol transition graph (Corollary 1).
In the following we describe the experimental results on TRS termination and
CTRS confluence. Further details of our experiments can be found at http:

//cl-informatik.uibk.ac.at/experiments/reachability/.

TRS Termination. For plain rewriting, we take all the 1498 TRSs from the TRS
standard category of the termination problem data base version 10.6,8 the bench-
mark used in the annual Termination Competition [8], and over-approximate
their dependency graphs. This results in 1 133 963 reachability constraints, which
we call “edges” here. Many of these edges are actually satisfiable, but we do not
know the exact number (the problem is undecidable in general).

For checking unsatisfiability of edges, we combine Corollary 2 for various
values of k (0, 1, 2, 3, and 8), and either Corollary 1 or ‘None’. Here ‘None’
concludes unsatisfiability only for constraints that are logically equivalent to ⊥.
In Table 1 we give the number of edges that could be shown unsatisfiable. Here,
the ‘UNSAT’ row indicates the number of detected unsatisfiable edges and the
‘time’ row indicates the total runtime in seconds. (We ran our experiments on an
Amazon EC2 instance model c5.xlarge: 4 virtual 3.0 GHz Intel Xeon Platinum
CPUs on 8GB of memory.)

The starting point is L1R + None, which corresponds to the tcap technique,
the method that was already implemented in NaTT before. The benefit of symbol
transition graphs turns out to be quite significant, while the overhead in runtime
seems acceptable. Moreover, increasing k of the look-ahead reasonably improves
the power of unsatisfiability checks, both with and without the symbol transition

6 https://www.trs.css.i.nagoya-u.ac.jp/NaTT/
7 http://cl-informatik.uibk.ac.at/software/concon/
8 http://www.termination-portal.org/wiki/TPDB

http://cl-informatik.uibk.ac.at/experiments/reachability/
http://cl-informatik.uibk.ac.at/experiments/reachability/
https://www.trs.css.i.nagoya-u.ac.jp/NaTT/
http://cl-informatik.uibk.ac.at/software/concon/
http://www.termination-portal.org/wiki/TPDB
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graph technique. In terms of the overall termination proving power, NaTT using
only tcap solves 1039 out of the 1498 termination problems, while using L8R and
Corollary 1, it proves termination of 18 additional problems.

CTRS Confluence. For conditional rewriting, we take the 148 oriented CTRSs
of Cops,9 a benchmark of confluence problems used in the annual Confluence
Competition [1]. Compared to version 1.5 of ConCon (the winner of the CTRS
category in the last competition in 2018) our new version (1.7) can solve five
more systems (that is a gain of roughly 3%) by incorporating a combination of
Theorem 3, inductive symbol transition graphs (Corollary 4), and k-fold look-
ahead (Lemma 7), where for the latter we fixed k = 1 since we additionally have
to control the level of conditional rewriting.

7 Related Work

Reachability is a classical topic in term rewriting; cf. Genet [7] for a survey.
Some modern techniques include the tree-automata-completion approach [6,5]
and a Knuth-Bendix completion-like approach [4]. Compared to these lines of
work, first of all our interest is not directly in reachability problems but their
(un)satisfiability. Middeldorp [12] proposed tree-automata techniques to approx-
imate dependency graphs and made a theoretical comparison to an early term-
cap-unifiability method [2], a predecessor of the tcap-based method. It is indeed
possible (after some approximations of input TRSs) to encode our satisfiabil-
ity problems into reachability problems between regular tree languages. How-
ever, our main motivation is to efficiently test reachability when analyzing other
properties like termination and confluence. In that setting, constructing tree
automata often leads to excessive overhead.

Our work is inspired by the work of Lucas and Gutiérrez [11]. Their feasibility
sequences serve the same purpose as our reachability constraints, but are limited
to atoms and conjunctions. Our formulation, allowing other constructions of logic
formulas, is essential for introducing look-ahead reachability.

8 Conclusion

We introduced reachability constraints and their satisfiability problem. Such
problems appear in termination and confluence analysis of plain and conditional
rewriting. Moreover, we proposed two efficient techniques to prove (un)satisfiability
of reachability constraints, first for plain and then for conditional rewriting. Fi-
nally, we implemented these techniques in the termination prover NaTT and the
confluence prover ConCon, and experimentally verified their significance.

Acknowledgments. We thank Aart Middeldorp and the anonymous reviewers for
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(FWF) project P27502 and ERATO HASUO Metamathematics for Systems De-
sign Project (No. JPMJER1603), JST.

9 http://cops.uibk.ac.at/?q=oriented+ctrs

http://cops.uibk.ac.at/?q=oriented+ctrs
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à diriger des recherches, Université de Rennes 1 (2009)
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