# How I Learned to Stop Worrying and Implement Dedukti Myself

Michael Färber

June 25, 2022

Michael Färber

How I Learned to Stop Worrying and Impleme

### Introduction

## Wish List for a Proof Checker

- nice syntax
- helpful error messages
- small & simple kernel
- take little time & memory

• . . .

## Wish List for a Proof Checker

nice syntax

• . . .

- helpful error messages
- small & simple kernel
- take little time & memory



Figure 1: Vouloir le beurre et l'argent du beurre.

Michael Färber

How I Learned to Stop Worrying and Impleme

# My Background

- 2019–2020: member of DEDUCTEAM
- extraction of proofs from proof assistent Isabelle
- $\bullet\,$  proofs quite large  $\rightarrow\,$  reimplement Dedukti (DK) to make it faster
- result: proof checker Kontroli (KO)

# My Background

- 2019–2020: member of DEDUCTEAM
- extraction of proofs from proof assistent Isabelle
- $\bullet\,$  proofs quite large  $\rightarrow\,$  reimplement Dedukti (DK) to make it faster
- result: proof checker Kontroli (KO)



I want to give you some basic knowledge of the Dedukti implementation. This should lower the barrier for you to tackle fun projects such as:

#### Processing DK theories

- transform DK theories to a proof blockchain
- machine learn theorem proving from DK proofs
- compress DK proofs (big data!)

### Using / Modifying DK

- integrate DK into a proof assistant as alternative backend
- implement some cool feature into DK
- reimplement DK (again)

### Preliminaries

Table 1: Definition of terms t, u.

| t, u :=            | description  | examples                                   |
|--------------------|--------------|--------------------------------------------|
| 5                  | sort         | Type, Kind (the type of Type)              |
| <i>c</i>           | constant     | vec, nat                                   |
| V                  | variable     | X                                          |
| tu                 | application  | vec x                                      |
| t  ightarrow u     | product      | $\mathit{nat}  ightarrow \mathit{nat}$     |
| $\lambda x : t. u$ | abstraction  | $\lambda x$ : nat. x                       |
| $ \Pi x:t.u $      | dep. product | $\Pi x$ : nat. vec $x \rightarrow$ vec $x$ |

Table 1: Definition of terms t, u.

| t, u :=            | description  | examples                                   |
|--------------------|--------------|--------------------------------------------|
| 5                  | sort         | Type, Kind (the type of Type)              |
| <i>c</i>           | constant     | vec, nat                                   |
| V                  | variable     | X                                          |
| tu                 | application  | vec x                                      |
| $ t \rightarrow u$ | product      | $\mathit{nat}  ightarrow \mathit{nat}$     |
| $\lambda x : t. u$ | abstraction  | $\lambda x$ : nat. x                       |
| $ \Pi x: t. u $    | dep. product | $\Pi x$ : nat. vec $x \rightarrow$ vec $x$ |

The encoding of terms has an *enormous* impact on performance!

Table 2: Definition of introduction commands *cmd*.

| <i>cmd</i> := | introduces | examples                                                                                                                                       |
|---------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|               |            | $\mathit{nat}: \mathtt{Type}, \mathit{vec}: \mathit{nat}  ightarrow \mathit{Type}$<br>$\mathit{rev} \mathit{nil} \hookrightarrow \mathit{nil}$ |

A *theory* is a sequence of commands.

Parsing

To process DK theories, often a parser is all you need.

#### Challenges

- Theories can be very large (>1GB)
- Terms (mostly proofs) can be very large (>100MB)

Off-the-shelf parsing tools might struggle with this.

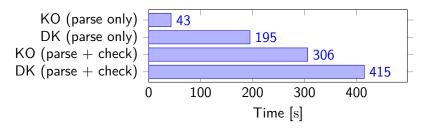


Figure 2: Processing the Isabelle/HOL dataset with Kontroli & Dedukti.

- Parsing can take up to half the total proof checking time
- Automatically generated parser can become a performance bottleneck

### Strict vs. Lazy

#### Strict Parsing

- parse file only once it has been read completely into memory
- Iower total runtime
- easier to implement

#### Lazy Parsing

- parse file line by line
- lower latency: parsing starts once a single line is read
- lower memory consumption: only one line in memory instead of file



- The Dedukti syntax is relatively "low-level".
- Yet, parsing it is still far from trivial.
- f : A # a constant, variable, or start of a quantifier?

- The Dedukti syntax is relatively "low-level".
- Yet, parsing it is still far from trivial.
- f : A # a constant, variable, or start of a quantifier?
- f : A

В

# an application

- The Dedukti syntax is relatively "low-level".
- Yet, parsing it is still far from trivial.

| f : A      | <pre># a constant, variable, or start of a quantifier?</pre> |
|------------|--------------------------------------------------------------|
| f : A<br>B | # an application                                             |
| f : A<br>B |                                                              |
| -> C       | # a product                                                  |

There can be surprises lurking at the end ....

 $\lambda f x.f x$  becomes  $\lambda f x.\overline{1}\overline{0}$ 

 $\overline{1}$  and  $\overline{0}$  are de Bruijn variables, which encode bound variables in  $\mathbb{N}$ .

- saves memory (if we parse lazily)
- takes more time (because we keep track of bound variables)
- often required anyway for proof checking

## Existing parsers

#### OCaml: the parser in dkcheck

- automatically generated
- good error reporting
- supports full DK syntax (by definition)

### Rust: the parser in kocheck (dedukti\_parse)

- hand-written
- lazy and strict parsing with and without scoping
- highly optimised for performance (up to  $\sim$ 4x faster)
- easy-to-use API
- abysmal error reporting
- supports a large subset of DK syntax, but not everything

#### My tip

Use an existing parser, if you can!





### Example: Pretty-Printing with dedukti\_parse

```
fn main() {
    // read stdin line-by-line
    use std::io::{stdin, BufRead};
    let lines = stdin().lock().lines().map(|1| l.unwrap());
```

```
// parse the commands in stdin
use dedukti_parse::{Lazy, Symb};
let cmds = Lazy::<_, Symb<String>, String>::new(lines);
```

```
// print every command
for cmd in cmds {
    println!("{}.", cmd.unwrap());
}
```

## **Proof Checking**

#### Processing a theory

For every command in the theory:

- If it introduces c : t, check that c is new and the type of t is a sort.
- 2 If it introduces  $I \hookrightarrow r$ , check that the types of I and r are convertible.
- O Add it to global context Γ (initially empty).

#### Processing a theory

For every command in the theory:

- If it introduces c : t, check that c is new and the type of t is a sort.
- **2** If it introduces  $I \hookrightarrow r$ , check that the types of I and r are convertible.
- 3 Add it to global context Γ (initially empty).

#### What we need

• How to infer the type of a term (find A such that  $\Gamma \vdash t : A$ )?

#### Processing a theory

For every command in the theory:

- If it introduces c : t, check that c is new and the type of t is a sort.
- 2 If it introduces  $I \hookrightarrow r$ , check that the types of I and r are convertible.
- O Add it to global context Γ (initially empty).

#### What we need

- How to infer the type of a term (find A such that  $\Gamma \vdash t : A$ )?
- How to check whether two terms are convertible  $(\Gamma \vdash I \equiv_{\beta \mathcal{R}} r)$ ?

## Type Checking & Inference

Type checking & inference consists of applying rules such as the following, where  $\Delta$  is a *local context* (contains statements of shape x : A):

$$\overline{\Gamma, \Delta \vdash \text{Type} : \text{Kind}}$$
 Type

$$\frac{\Gamma, \Delta \vdash A : \texttt{Type} \qquad \Gamma, \Delta, x : A \vdash t : s}{\Gamma, \Delta \vdash (\Pi x : A. t) : s} \mathsf{Prod}$$

$$\frac{\Gamma, \Delta \vdash t : A \quad \Gamma, \Delta \vdash B : s \quad \Gamma \vdash A \equiv_{\beta \mathcal{R}} B}{\Gamma, \Delta \vdash t : B}$$
Conv

- The convertibility rule "Conv" leaves it up to us to choose *B*.
- Dedukti cannot guess *B*, so it does not implement this Conv rule.
- Instead, it modifies all other rules to account for convertibility.

## Type Checking of Rewrite Rules

How to check that a rewrite rule containing variables preserves types?

#### With Type Annotations

- Example: [X: nat] square X --> mult X X.
- Put variable bindings (X: nat) into local context  $\Delta$
- Find A, B such that  $\Gamma, \Delta \vdash$  square X : A and  $\Gamma, \Delta \vdash$  mult X X : B.
- Verify that A and B are convertible.

How to check that a rewrite rule containing variables preserves types?

#### With Type Annotations

- Example: [X: nat] square X --> mult X X.
- Put variable bindings (X: nat) into local context Δ
- Find A, B such that  $\Gamma, \Delta \vdash$  square X : A and  $\Gamma, \Delta \vdash$  mult X X : B.
- Verify that A and B are convertible.

#### Without Type Annotations

- Example: [X] square X --> mult X X.
- We do not know the type of X, so we cannot put it into  $\Delta$ !
- DK uses bidirectional type checking in this case
- Highly complex (I do not really understand how it works)
- Not needed if types for all variables given

## Convertibility Check

To check whether *I* and *r* are convertible  $(I \sim r)$ :

- **1** Reduce *I* and *r* to weak-head normal form (WHNF).
- 2 If l = r, return true.
- If I and r match any case in table 3, check all constraints.

Ise return false.

Table 3: Constraints.

| 1                                  | r                                                                | constraints                           |
|------------------------------------|------------------------------------------------------------------|---------------------------------------|
| $\lambda x : A.t$<br>$\Pi x : A.t$ | λу : В.и<br>Пу : В.и                                             | $t \sim u$<br>$t \sim u$ , $A \sim B$ |
| $t_1 t_2 \dots t_n$                | <i>u</i> <sub>1</sub> <i>u</i> <sub>2</sub> <i>u<sub>n</sub></i> | $t_1 \sim u_1, \ldots, t_n \sim u_n$  |

To check whether *I* and *r* are convertible  $(I \sim r)$ :

- **1** Reduce *I* and *r* to weak-head normal form (WHNF).
- ② If l = r, return true.
- If I and r match any case in table 3, check all constraints.

Else return false.

Table 3: Constraints.

| 1                                  | r                                                                | constraints                           |
|------------------------------------|------------------------------------------------------------------|---------------------------------------|
| $\lambda x : A.t$<br>$\Pi x : A.t$ | λу : В.и<br>Пу : В.и                                             | $t \sim u$<br>$t \sim u$ , $A \sim B$ |
| $t_1 t_2 \dots t_n$                | <i>u</i> <sub>1</sub> <i>u</i> <sub>2</sub> <i>u<sub>n</sub></i> | $t_1 \sim u_1, \ldots, t_n \sim u_n$  |

### Reduction

How to get the WHNF of a term in the presence of rewrite rules?This part is about 40% of the Kontroli kernel!

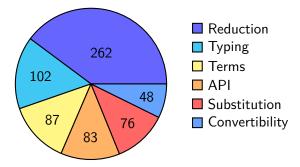


Figure 3: Lines of code of all parts of the Kontroli kernel.

- Laziness: ite ⊤ T F → T, ite ⊥ T F → F (evaluates only one of T and F)
- Sharing: double X → add X X (evaluating the first argument of add also evaluates the second)
- Equality constraints: eq X X → ⊤
   (checks whether first and second argument of eq are convertible)

DK (and KO) encode terms during reduction as abstract machines:

```
type state = {
  ctx : term Lazy.t list; (* substitution applied to term *)
  term : term;
  stack : state ref list; (* arguments applied to term *)
}
```

### Memoization: Matching term *ite* (eq 0 1) fg with pattern *ite* $\top TF$

We convert the term *ite* (eq 0 1) f g to a machine state, where term = *ite* and stack = [eq 0 1, f, g].

**②** Matching with *ite*  $\top$  *T F* evaluates *eq* 0 1 to  $\perp$ ; we update the stack.

**(a)**  $\perp$  does not match  $\top$ , so the term does *not* match the pattern.

Because we updated the stack, subsequent pattern matches with this machine will *not* need to evaluate  $eq \ 0 \ 1$  again.

### **Decision Trees**

#### Accelerate matching with many overlapping rewrite rules

| Example (from the DK Sudoku solver) |
|-------------------------------------|
| [x] getc 1 (c x )> x                |
| [x] getc 2 (c _ x )> x              |
| [x] getc 3 (c x )> x                |
| [x] getc 4 (c x )> x                |
| [x] getc 5 (c x)> x                 |
| [x] getc 6 (c x)> x                 |
| [x] getc 7 (c x _ )> x              |
| [x] getc 8 (c x _)> x               |
| [x] getc 9 (c x) $\rightarrow x$ .  |

#### My experience

When only few rewrite rules on the same head symbol are defined, decision trees do not pay off  $\to$  I did not implement them

Michael Färber

How I Learned to Stop Worrying and Impleme

June 25, 2022

- Example: forall  $(\lambda x. \top) \hookrightarrow \top$
- Encoding of CoC uses it
- $\bullet$  FOL & HOL-like theories do not need it  $\rightarrow$  I did not implement this

### Sharing & Memory

## Sharing

- implicit in many FP languages (such as OCaml, Haskell, ...)
- explicit in other languages (such as Rust, C, ...)
- saves time & memory
- due to implicitness, easy to break

#### Without Sharing

| let | a | = | "zero" | in |  |
|-----|---|---|--------|----|--|
| let | b | = | "zero" | in |  |

a = b && not (a == b) (\* slow: character-wise comparison \*)

#### With Sharing



## Sharing in Dedukti



#### Shared constants

- Map all equal parsed constants to a single canonical constant
- To compare constants, compare *only* pointer addresses

#### Shared terms

- Reuse existing terms instead of keeping new terms whenever possible
- Example: to substitute t with  $\sigma$ , when  $\sigma t = t$ , then return t, not  $\sigma t$
- To determine whether t = u, compare addresses of t and u first

## Memory allocation

- proof checking (de-)allocates lots of memory, mostly for terms
- memory allocator manages where objects are written to in memory
- mimalloc: memory allocator originally written for proof assistant Lean
- using mimalloc boosts speed with minimal effort (3 lines added)

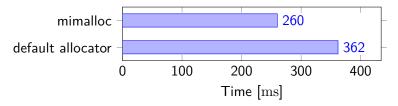


Figure 4: Kontroli checking the Matita dataset using different allocators.

When using garbage collection, similar gains *might* be obtained by tuning it.

# Conclusion

- The representation of terms is crucial for performance.
- Parsing is an important performance bottleneck.
- $\bullet$  Parsing is hard  $\rightarrow$  use an existing parser.
- Bidirectional type checking can be omitted if types of rewrite rule variables are annotated by hand.
- Regular type and convertibility checking are easy.
- First-order rewriting is enough for many theories, e.g. HOL.
- Evaluation is hairy due to lazy evaluation, memoization, ....
- Sharing of constants & terms saves time & memory.
- The memory allocation strategy has a large impact.