
How I Learned to Stop Worrying and Implement
Dedukti Myself

Michael Färber

June 25, 2022

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 1 / 36

Section 1

Introduction

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 2 / 36

Wish List for a Proof Checker
nice syntax
helpful error messages
small & simple kernel
take little time & memory
. . .

Figure 1: Vouloir le beurre et l’argent du beurre.

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 3 / 36

Wish List for a Proof Checker
nice syntax
helpful error messages
small & simple kernel
take little time & memory
. . .

Figure 1: Vouloir le beurre et l’argent du beurre.

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 3 / 36

My Background

2019–2020: member of DEDUCTEAM
extraction of proofs from proof assistent Isabelle
proofs quite large → reimplement Dedukti (DK) to make it faster
result: proof checker Kontroli (KO)

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 4 / 36

https://github.com/Deducteam/Dedukti
https://github.com/01mf02/kontroli-rs

My Background

2019–2020: member of DEDUCTEAM
extraction of proofs from proof assistent Isabelle
proofs quite large → reimplement Dedukti (DK) to make it faster
result: proof checker Kontroli (KO)

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 4 / 36

https://github.com/Deducteam/Dedukti
https://github.com/01mf02/kontroli-rs

Goal of this Talk

I want to give you some basic knowledge of the Dedukti implementation.
This should lower the barrier for you to tackle fun projects such as:

Processing DK theories
transform DK theories to a proof blockchain
machine learn theorem proving from DK proofs
compress DK proofs (big data!)

Using / Modifying DK
integrate DK into a proof assistant as alternative backend
implement some cool feature into DK
reimplement DK (again)

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 5 / 36

Section 2

Preliminaries

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 6 / 36

Terms

Table 1: Definition of terms t, u.

t, u := description examples

| s sort Type, Kind (the type of Type)
| c constant vec, nat
| v variable x
| t u application vec x
| t → u product nat → nat
| λx : t. u abstraction λx : nat. x
| Πx : t. u dep. product Πx : nat. vec x → vec x

The encoding of terms has an enormous impact on performance!

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 7 / 36

Terms

Table 1: Definition of terms t, u.

t, u := description examples

| s sort Type, Kind (the type of Type)
| c constant vec, nat
| v variable x
| t u application vec x
| t → u product nat → nat
| λx : t. u abstraction λx : nat. x
| Πx : t. u dep. product Πx : nat. vec x → vec x

The encoding of terms has an enormous impact on performance!

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 7 / 36

Commands

Table 2: Definition of introduction commands cmd .

cmd := introduces examples

| c : t constant nat : Type, vec : nat → Type
| l ↪→ r rewrite rule rev nil ↪→ nil

A theory is a sequence of commands.

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 8 / 36

Section 3

Parsing

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 9 / 36

Parsing

To process DK theories, often a parser is all you need.

Challenges
Theories can be very large (>1GB)
Terms (mostly proofs) can be very large (>100MB)

Off-the-shelf parsing tools might struggle with this.

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 10 / 36

Performance

0 100 200 300 400
DK (parse + check)
KO (parse + check)

DK (parse only)
KO (parse only)

415
306

195
43

Time [s]

Figure 2: Processing the Isabelle/HOL dataset with Kontroli & Dedukti.

Parsing can take up to half the total proof checking time
Automatically generated parser can become a performance bottleneck

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 11 / 36

Strict vs. Lazy
Strict Parsing

parse file only once it has been read completely into memory
lower total runtime
easier to implement

Lazy Parsing
parse file line by line
lower latency: parsing starts once a single line is read
lower memory consumption: only one line in memory instead of file

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 12 / 36

Pitfalls of Dedukti’s Syntax

The Dedukti syntax is relatively “low-level”.
Yet, parsing it is still far from trivial.

f : A # a constant, variable, or start of a quantifier?

f : A
B # an application

f : A
B

-> C # a product

There can be surprises lurking at the end . . .

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 13 / 36

Pitfalls of Dedukti’s Syntax

The Dedukti syntax is relatively “low-level”.
Yet, parsing it is still far from trivial.

f : A # a constant, variable, or start of a quantifier?

f : A
B # an application

f : A
B

-> C # a product

There can be surprises lurking at the end . . .

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 13 / 36

Pitfalls of Dedukti’s Syntax

The Dedukti syntax is relatively “low-level”.
Yet, parsing it is still far from trivial.

f : A # a constant, variable, or start of a quantifier?

f : A
B # an application

f : A
B

-> C # a product

There can be surprises lurking at the end . . .

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 13 / 36

Scoping

λf x .f x becomes λf x .1 0

1 and 0 are de Bruijn variables, which encode bound variables in N.

saves memory (if we parse lazily)
takes more time (because we keep track of bound variables)
often required anyway for proof checking

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 14 / 36

Existing parsers
OCaml: the parser in dkcheck

automatically generated
good error reporting
supports full DK syntax (by definition)

Rust: the parser in kocheck (dedukti_parse)
hand-written
lazy and strict parsing with and without scoping
highly optimised for performance (up to ~4x faster)
easy-to-use API
abysmal error reporting
supports a large subset of DK syntax, but not everything

My tip
Use an existing parser, if you can!

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 15 / 36

https://docs.rs/dedukti-parse/

Example: Pretty-Printing with dedukti_parse

fn main() {
// read stdin line-by-line
use std::io::{stdin, BufRead};
let lines = stdin().lock().lines().map(|l| l.unwrap());

// parse the commands in stdin
use dedukti_parse::{Lazy, Symb};
let cmds = Lazy::<_, Symb<String>, String>::new(lines);

// print every command
for cmd in cmds {

println!("{}.", cmd.unwrap());
}

}

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 16 / 36

Section 4

Proof Checking

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 17 / 36

Proof Checking

Processing a theory
For every command in the theory:

1 If it introduces c : t, check that c is new and the type of t is a sort.
2 If it introduces l ↪→ r , check that the types of l and r are convertible.
3 Add it to global context Γ (initially empty).

What we need
How to infer the type of a term (find A such that Γ ⊢ t : A)?
How to check whether two terms are convertible (Γ ⊢ l ≡βR r)?

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 18 / 36

Proof Checking

Processing a theory
For every command in the theory:

1 If it introduces c : t, check that c is new and the type of t is a sort.
2 If it introduces l ↪→ r , check that the types of l and r are convertible.
3 Add it to global context Γ (initially empty).

What we need
How to infer the type of a term (find A such that Γ ⊢ t : A)?

How to check whether two terms are convertible (Γ ⊢ l ≡βR r)?

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 18 / 36

Proof Checking

Processing a theory
For every command in the theory:

1 If it introduces c : t, check that c is new and the type of t is a sort.
2 If it introduces l ↪→ r , check that the types of l and r are convertible.
3 Add it to global context Γ (initially empty).

What we need
How to infer the type of a term (find A such that Γ ⊢ t : A)?
How to check whether two terms are convertible (Γ ⊢ l ≡βR r)?

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 18 / 36

Section 5

Type Checking & Inference

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 19 / 36

Type Checking & Inference

Type checking & inference consists of applying rules such as the following,
where ∆ is a local context (contains statements of shape x : A):

Type
Γ, ∆ ⊢ Type : Kind

Γ, ∆ ⊢ A : Type Γ, ∆, x : A ⊢ t : s
Prod

Γ, ∆ ⊢ (Πx :A. t) : s

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 20 / 36

Convertibility: the modulo in “λΠ-calculus modulo”

Γ, ∆ ⊢ t : A Γ, ∆ ⊢ B : s Γ ⊢ A ≡βR B
Conv

Γ, ∆ ⊢ t : B

The convertibility rule “Conv” leaves it up to us to choose B.
Dedukti cannot guess B, so it does not implement this Conv rule.
Instead, it modifies all other rules to account for convertibility.

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 21 / 36

Type Checking of Rewrite Rules

How to check that a rewrite rule containing variables preserves types?

With Type Annotations
Example: [X: nat] square X --> mult X X.
Put variable bindings (X: nat) into local context ∆
Find A, B such that Γ, ∆ ⊢ square X : A and Γ, ∆ ⊢ mult X X : B.
Verify that A and B are convertible.

Without Type Annotations
Example: [X] square X --> mult X X.
We do not know the type of X, so we cannot put it into ∆!
DK uses bidirectional type checking in this case
Highly complex (I do not really understand how it works)
Not needed if types for all variables given

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 22 / 36

Type Checking of Rewrite Rules

How to check that a rewrite rule containing variables preserves types?

With Type Annotations
Example: [X: nat] square X --> mult X X.
Put variable bindings (X: nat) into local context ∆
Find A, B such that Γ, ∆ ⊢ square X : A and Γ, ∆ ⊢ mult X X : B.
Verify that A and B are convertible.

Without Type Annotations
Example: [X] square X --> mult X X.
We do not know the type of X, so we cannot put it into ∆!
DK uses bidirectional type checking in this case
Highly complex (I do not really understand how it works)
Not needed if types for all variables given

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 22 / 36

Section 6

Convertibility Check

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 23 / 36

Convertibility Check

To check whether l and r are convertible (l ∼ r):
1 Reduce l and r to weak-head normal form (WHNF).
2 If l = r , return true.
3 If l and r match any case in table 3, check all constraints.
4 Else return false.

Table 3: Constraints.

l r constraints

λx : A.t λy : B.u t ∼ u
Πx : A.t Πy : B.u t ∼ u, A ∼ B
t1 t2 . . . tn u1 u2 . . . un t1 ∼ u1, . . . , tn ∼ un

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 24 / 36

Convertibility Check

To check whether l and r are convertible (l ∼ r):
1 Reduce l and r to weak-head normal form (WHNF).
2 If l = r , return true.
3 If l and r match any case in table 3, check all constraints.
4 Else return false.

Table 3: Constraints.

l r constraints

λx : A.t λy : B.u t ∼ u
Πx : A.t Πy : B.u t ∼ u, A ∼ B
t1 t2 . . . tn u1 u2 . . . un t1 ∼ u1, . . . , tn ∼ un

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 24 / 36

Section 7

Reduction

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 25 / 36

Reduction

How to get the WHNF of a term in the presence of rewrite rules?
This part is about 40% of the Kontroli kernel!

262
102

87
83

76

48

Reduction
Typing
Terms
API
Substitution
Convertibility

Figure 3: Lines of code of all parts of the Kontroli kernel.

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 26 / 36

Reduction: Challenges

Laziness: ite ⊤ T F ↪→ T , ite ⊥ T F ↪→ F
(evaluates only one of T and F)
Sharing: double X ↪→ add X X
(evaluating the first argument of add also evaluates the second)
Equality constraints: eq X X ↪→ ⊤
(checks whether first and second argument of eq are convertible)

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 27 / 36

Abstract Machines

DK (and KO) encode terms during reduction as abstract machines:

type state = {
ctx : term Lazy.t list; (* substitution applied to term *)
term : term;
stack : state ref list; (* arguments applied to term *)

}

Memoization: Matching term ite (eq 0 1) f g with pattern ite ⊤ T F
1 We convert the term ite (eq 0 1) f g to a machine state, where

term = ite and stack = [eq 0 1, f , g].
2 Matching with ite ⊤ T F evaluates eq 0 1 to ⊥; we update the stack.
3 ⊥ does not match ⊤, so the term does not match the pattern.

Because we updated the stack, subsequent pattern matches with this
machine will not need to evaluate eq 0 1 again.

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 28 / 36

Decision Trees
Accelerate matching with many overlapping rewrite rules

Example (from the DK Sudoku solver)
[x] getc 1 (c x _ _ _ _ _ _ _ _) --> x
[x] getc 2 (c _ x _ _ _ _ _ _ _) --> x
[x] getc 3 (c _ _ x _ _ _ _ _ _) --> x
[x] getc 4 (c _ _ _ x _ _ _ _ _) --> x
[x] getc 5 (c _ _ _ _ x _ _ _ _) --> x
[x] getc 6 (c _ _ _ _ _ x _ _ _) --> x
[x] getc 7 (c _ _ _ _ _ _ x _ _) --> x
[x] getc 8 (c _ _ _ _ _ _ _ x _) --> x
[x] getc 9 (c _ _ _ _ _ _ _ _ x) --> x.

My experience
When only few rewrite rules on the same head symbol are defined, decision
trees do not pay off → I did not implement them

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 29 / 36

Higher-Order Rewriting

Example: forall (λx .⊤) ↪→ ⊤
Encoding of CoC uses it
FOL & HOL-like theories do not need it → I did not implement this

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 30 / 36

Section 8

Sharing & Memory

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 31 / 36

Sharing

implicit in many FP languages (such as OCaml, Haskell, . . .)
explicit in other languages (such as Rust, C, . . .)
saves time & memory
due to implicitness, easy to break

Without Sharing
let a = "zero" in
let b = "zero" in
a = b && not (a == b) (* slow: character-wise comparison *)

With Sharing
let a = "zero" in
let b = a in
a = b && a == b (* fast: comparison by memory address *)

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 32 / 36

Sharing in Dedukti

Shared constants
Map all equal parsed constants to a single canonical constant
To compare constants, compare only pointer addresses

Shared terms
Reuse existing terms instead of keeping new terms whenever possible
Example: to substitute t with σ, when σt = t, then return t, not σt
To determine whether t = u, compare addresses of t and u first

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 33 / 36

Memory allocation

proof checking (de-)allocates lots of memory, mostly for terms
memory allocator manages where objects are written to in memory
mimalloc: memory allocator originally written for proof assistant Lean
using mimalloc boosts speed with minimal effort (3 lines added)

0 100 200 300 400
default allocator

mimalloc

362

260

Time [ms]

Figure 4: Kontroli checking the Matita dataset using different allocators.

When using garbage collection, similar gains might be obtained by tuning it.

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 34 / 36

https://github.com/microsoft/mimalloc

Section 9

Conclusion

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 35 / 36

Conclusion

The representation of terms is crucial for performance.
Parsing is an important performance bottleneck.
Parsing is hard → use an existing parser.
Bidirectional type checking can be omitted if types of rewrite rule
variables are annotated by hand.
Regular type and convertibility checking are easy.
First-order rewriting is enough for many theories, e.g. HOL.
Evaluation is hairy due to lazy evaluation, memoization, . . .
Sharing of constants & terms saves time & memory.
The memory allocation strategy has a large impact.

Michael Färber How I Learned to Stop Worrying and Implement Dedukti MyselfJune 25, 2022 36 / 36

	Introduction
	Preliminaries
	Parsing
	Proof Checking
	Type Checking & Inference
	Convertibility Check
	Reduction
	Sharing & Memory
	Conclusion

