Terms for Efficient Proof Checking & Parsing

Michael Farber

2023-01-17

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Introduction

e Automatically generated proofs from ITPs/ATPs tend to be quite large.
@ A proof checker can take considerable time checking such proofs.

@ We can improve proof checking performance by exploiting parallelism.
@ However, it is not easy to do this while achieving:

o small kernel (for trustworthiness)

e high single- and multi-threaded performance

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Sequential Processing & Parallel Parsing

How to check a sequence of theorems (= statement + proof)?

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Sequential Processing & Parallel Parsing

How to check a sequence of theorems (= statement + proof)?

parse > share > check >§ parse > share > check

Figure 1. Sequential processing.

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Sequential Processing & Parallel Parsing

How to check a sequence of theorems (= statement + proof)?

parse > share > check >§ parse > share > check

Figure 1. Sequential processing.

Parse
arse >§ arse
thread P P

Main
thread share > check >§ share > check

Figure 2: Parallel parsing.

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Parallel Checking

Main parse > share >§ parse > share

thread

Check
thread

Check
thread @

Figure 3: Parallel checking.

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Parallel Checking

Main
thread

Check
thread

Check
thread

Problem
How to efficiently check proofs in different threads?

parse > share >§ parse > share

check

Figure 3: Parallel checking.

Michael Farber

Terms for Efficient Proof Checking & Parsing

2023-01-17

Previous Work @ CPP’22

o | presented a proof checker called Kontroli written in Rust.

@ It reimplements large parts of the Dedukti proof checker, but supports
parallel checking and parsing of proofs.

@ It improved the state of the art proof checking performance.

Shortcomings

@ It used two different kernels for single- and multi-threaded checking.
@ It was far from reaching theoretical optimal parallel performance.

@ Uses heterogeneous terms to greatly improve checking performance
@ Uses abstract terms to improve parsing performance (not covered here)
@ Fastest mode is now up to 3.6x as fast as previous fastest mode!

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Section 1

Homogeneous Terms

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Terms

Terms are the central data structure in a proof checker:

application abstraction
=
t=c|x|tu] Ax:t.u| Nx:t u,

where t and u are terms, c is a constant, x is a variable
In OCaml, a term type can be specified as:

type term =

| Const of string
Var of int
Appl of term * term list
Abst of term * term
Prod of term * term

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Pointer Types

Rust requires use of pointers to obtain inductive types (such as terms).

Thread-safe

Box Arc

Fast Shared
Rc

Figure 4: Three commonly used pointer types.

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

A First Take on Terms in Rust

enum Term {
Const (String),

Var (usize), Box{?
Appl (Box<Term>, Vec<Term>),
Abst (Box<Term>, Box<Term>), Term

Prod (Box<Term>, Box<Term>),

Problems

@ Using Box means that cloning terms takes linear time!
e This is bad for checking, because checking frequently clones terms.
e However, this is OK for parsing, because parsing does not clone terms.

@ Both Abst and Prod use two Box pointers, but one would suffice.

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17 9/18

Second Take on Terms

Factoring out the recursive term variants . ..

enum Comb<Tm> {
Appl(Tm, Vec<Tm>),
Abst(Tm, Tm),
Prod(Tm, Tm),

}
leaves the following term type:
enum LTerm { Comb<LTerm>
Const (&str),
Var (usize), Arc
LComb (Arc<Comb<LTerm>>) ,
LTerm

o My CPP’22 paper used this term type.
@ Problem: Creating many terms containing Arc is slow!

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Section 2

Heterogeneous Terms

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Heterogeneous Terms

@ The global context I stores background knowledge.
@ The local context A stores knowledge for the current checking task.

Property Termsin I Terms in A

Content Constant types & definitions Proofs, calculations
Lifetime Until program exits Until a proof is checked
Quantity Few (bounded by input) Many (unbounded!)
Access From multiple threads From single thread

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17 12/18

Heterogeneous Terms

@ The global context I stores background knowledge.
@ The local context A stores knowledge for the current checking task.

Property Termsin I Terms in A

Content Constant types & definitions Proofs, calculations
Lifetime Until program exits Until a proof is checked
Quantity Few (bounded by input) Many (unbounded!)
Access From multiple threads From single thread

Create separate term types for terms in [and Al

o I and A resemble long & short term memory (thanks to Gilles Dowek).
o | call terms in ' Jong terms and in A short terms.

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Heterogeneous Terms, First Take

enum STerm { Comb<LTerm> Comb<STerm>
Const (&str),
Var (usize), Arc Rc
SComb (Rc<Comb<STerm>>) ,

} LTerm STerm

Problem

Converting an LTerm to STerm takes linear time!

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Heterogeneous Terms, Second Take

enun STerm { Comb<LTerm> Comb<STerm>
Const (&str),
Var (usize), Arc Rc
SComb (Rc<Comb<STerm>>) , &
LComb (& <Comb<LTerm>>), LTerm STerm
}

Advantages

@ Converting an LTerm to an STerm takes constant time.
@ An STerm referencing an LTerm can be created and destroyed very
quickly, because it does not involve reference counting.

Disadvantage
We cannot “forget” terms in I while terms in A reference them.

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Section 3

Evaluation

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Isabelle/HOL Dataset (2.5GB, 1.7M proofs)

DK
DKNp

KO
KOc:l
KOC=2

KOC*4

Meaning

Dedukti, sequential
DK, parsing only
Kontroli, sequential
KO, n check threads
KO, parallel parsing
KO, no checking
KO, parsing only

| 534
254
7 | 506
227
— . } 595 Conf.
77070
h377 DK
7 133 DKNp
| h243 KO
/) 89 KOe—
— 1369 KOP=1
KO
152 \e
- = Hom. terms (old)
67 o Het. terms (new
7] 44

Michael Farber

Runtime [s]

Terms for Efficient Proof Checking & Parsing

2023-01-17 16 /18

Section 4

Conclusion

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Conclusion

@ Homogeneous terms are good for parsing, because they are not shared.

@ Heterogeneous terms are good for checking:
o Fast referencing of -terms in A-terms (without reference counting)
o Single kernel for sequential and parallel checking, without overhead

Comb<LTerm> Comb<STerm>
Arc Rc
&
LTerm STerm

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

Conclusion

@ Homogeneous terms are good for parsing, because they are not shared.

@ Heterogeneous terms are good for checking:
o Fast referencing of -terms in A-terms (without reference counting)
o Single kernel for sequential and parallel checking, without overhead

Comb<LTerm> Comb<STerm>
Arc Rc
&
LTerm STerm

Thank you for your attention!

Michael Farber Terms for Efficient Proof Checking & Parsing 2023-01-17

	Homogeneous Terms
	Heterogeneous Terms
	Evaluation
	Conclusion

