
Terms for Efficient Proof Checking & Parsing

Michael Färber

2023-01-17

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 1 / 18

Introduction

Automatically generated proofs from ITPs/ATPs tend to be quite large.
A proof checker can take considerable time checking such proofs.

We can improve proof checking performance by exploiting parallelism.
However, it is not easy to do this while achieving:

small kernel (for trustworthiness)
high single- and multi-threaded performance

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 2 / 18

Sequential Processing & Parallel Parsing

How to check a sequence of theorems (= statement + proof)?

parse share check parse share check · · ·

Figure 1: Sequential processing.

parse parse · · ·Parse
thread

share check share check · · ·Main
thread

Figure 2: Parallel parsing.

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 3 / 18

Sequential Processing & Parallel Parsing

How to check a sequence of theorems (= statement + proof)?

parse share check parse share check · · ·

Figure 1: Sequential processing.

parse parse · · ·Parse
thread

share check share check · · ·Main
thread

Figure 2: Parallel parsing.

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 3 / 18

Sequential Processing & Parallel Parsing

How to check a sequence of theorems (= statement + proof)?

parse share check parse share check · · ·

Figure 1: Sequential processing.

parse parse · · ·Parse
thread

share check share check · · ·Main
thread

Figure 2: Parallel parsing.

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 3 / 18

Parallel Checking

parse share parse share · · ·Main
thread

check

check

...

Check
thread

Check
thread

...

Figure 3: Parallel checking.

Problem
How to efficiently check proofs in different threads?

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 4 / 18

Parallel Checking

parse share parse share · · ·Main
thread

check

check

...

Check
thread

Check
thread

...

Figure 3: Parallel checking.

Problem
How to efficiently check proofs in different threads?

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 4 / 18

Previous Work

Previous Work @ CPP’22
I presented a proof checker called Kontroli written in Rust.
It reimplements large parts of the Dedukti proof checker, but supports
parallel checking and parsing of proofs.
It improved the state of the art proof checking performance.

Shortcomings
It used two different kernels for single- and multi-threaded checking.
It was far from reaching theoretical optimal parallel performance.

This Work
Uses heterogeneous terms to greatly improve checking performance
Uses abstract terms to improve parsing performance (not covered here)
Fastest mode is now up to 3.6x as fast as previous fastest mode!

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 5 / 18

Section 1

Homogeneous Terms

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 6 / 18

Terms

Terms are the central data structure in a proof checker:

t := c | x |
application︷︸︸︷

t u |
abstraction︷ ︸︸ ︷

λx : t. u | Πx : t. u,

where t and u are terms, c is a constant, x is a variable

In OCaml, a term type can be specified as:

type term =
| Const of string
| Var of int
| Appl of term * term list
| Abst of term * term
| Prod of term * term

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 7 / 18

Pointer Types

Rust requires use of pointers to obtain inductive types (such as terms).

Thread-safe

Fast Shared

ArcBox

Rc

&

Figure 4: Three commonly used pointer types.

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 8 / 18

A First Take on Terms in Rust

enum Term {
Const(String),
Var(usize),
Appl(Box<Term>, Vec<Term>),
Abst(Box<Term>, Box<Term>),
Prod(Box<Term>, Box<Term>),

}

Term

Box

Problems
Using Box means that cloning terms takes linear time!

This is bad for checking, because checking frequently clones terms.
However, this is OK for parsing, because parsing does not clone terms.

Both Abst and Prod use two Box pointers, but one would suffice.

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 9 / 18

Second Take on Terms

Factoring out the recursive term variants . . .

enum Comb<Tm> {
Appl(Tm, Vec<Tm>),
Abst(Tm, Tm),
Prod(Tm, Tm),

}

. . . leaves the following term type:
enum LTerm {

Const(&str),
Var(usize),
LComb(Arc<Comb<LTerm>>),

}

Comb<LTerm>

LTerm

Arc

My CPP’22 paper used this term type.
Problem: Creating many terms containing Arc is slow!

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 10 / 18

Section 2

Heterogeneous Terms

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 11 / 18

Heterogeneous Terms
The global context Γ stores background knowledge.
The local context ∆ stores knowledge for the current checking task.

Property Terms in Γ Terms in ∆

Content Constant types & definitions Proofs, calculations
Lifetime Until program exits Until a proof is checked
Quantity Few (bounded by input) Many (unbounded!)
Access From multiple threads From single thread

Idea
Create separate term types for terms in Γ and ∆!

Naming
Γ and ∆ resemble long & short term memory (thanks to Gilles Dowek).
I call terms in Γ long terms and in ∆ short terms.

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 12 / 18

Heterogeneous Terms
The global context Γ stores background knowledge.
The local context ∆ stores knowledge for the current checking task.

Property Terms in Γ Terms in ∆

Content Constant types & definitions Proofs, calculations
Lifetime Until program exits Until a proof is checked
Quantity Few (bounded by input) Many (unbounded!)
Access From multiple threads From single thread

Idea
Create separate term types for terms in Γ and ∆!

Naming
Γ and ∆ resemble long & short term memory (thanks to Gilles Dowek).
I call terms in Γ long terms and in ∆ short terms.

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 12 / 18

Heterogeneous Terms, First Take

enum STerm {
Const(&str),
Var(usize),
SComb(Rc<Comb<STerm>>),

}

Comb<LTerm>

LTerm

Arc

Comb<STerm>

STerm

Rc

Problem
Converting an LTerm to STerm takes linear time!

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 13 / 18

Heterogeneous Terms, Second Take

enum STerm {
Const(&str),
Var(usize),
SComb(Rc<Comb<STerm>>),
LComb(& <Comb<LTerm>>),

}

Comb<LTerm>

LTerm

Arc

Comb<STerm>

STerm

Rc
&

Advantages
Converting an LTerm to an STerm takes constant time.
An STerm referencing an LTerm can be created and destroyed very
quickly, because it does not involve reference counting.

Disadvantage
We cannot “forget” terms in Γ while terms in ∆ reference them.

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 14 / 18

Section 3

Evaluation

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 15 / 18

Isabelle/HOL Dataset (2.5GB, 1.7M proofs)

DK
DK∩p

534
254

KO

KOc=1

KOc=2

KOc=4

KOp=1
c=4

KO\c

KO∩p

227

230

133

89

68

61

44

506

595

377

243

369

152

67

Runtime [s]

Hom. terms (old)
Het. terms (new)

Conf. Meaning

DK Dedukti, sequential
DK∩p DK, parsing only
KO Kontroli, sequential
KOc=n KO, n check threads
KOp=1 KO, parallel parsing
KO\c KO, no checking
KO∩p KO, parsing only

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 16 / 18

Section 4

Conclusion

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 17 / 18

Conclusion

Homogeneous terms are good for parsing, because they are not shared.
Heterogeneous terms are good for checking:

Fast referencing of Γ-terms in ∆-terms (without reference counting)
Single kernel for sequential and parallel checking, without overhead

Comb<LTerm>

LTerm

Arc

Comb<STerm>

STerm

Rc
&

Thank you for your attention!

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 18 / 18

Conclusion

Homogeneous terms are good for parsing, because they are not shared.
Heterogeneous terms are good for checking:

Fast referencing of Γ-terms in ∆-terms (without reference counting)
Single kernel for sequential and parallel checking, without overhead

Comb<LTerm>

LTerm

Arc

Comb<STerm>

STerm

Rc
&

Thank you for your attention!

Michael Färber Terms for Efficient Proof Checking & Parsing 2023-01-17 18 / 18

	Homogeneous Terms
	Heterogeneous Terms
	Evaluation
	Conclusion

