YES Problem: f(g(x)) -> f(a(g(g(f(x))),g(f(x)))) Proof: DP Processor: DPs: f#(g(x)) -> f#(x) f#(g(x)) -> f#(a(g(g(f(x))),g(f(x)))) TRS: f(g(x)) -> f(a(g(g(f(x))),g(f(x)))) EDG Processor: DPs: f#(g(x)) -> f#(x) f#(g(x)) -> f#(a(g(g(f(x))),g(f(x)))) TRS: f(g(x)) -> f(a(g(g(f(x))),g(f(x)))) graph: f#(g(x)) -> f#(x) -> f#(g(x)) -> f#(x) f#(g(x)) -> f#(x) -> f#(g(x)) -> f#(a(g(g(f(x))),g(f(x)))) Restore Modifier: DPs: f#(g(x)) -> f#(x) f#(g(x)) -> f#(a(g(g(f(x))),g(f(x)))) TRS: f(g(x)) -> f(a(g(g(f(x))),g(f(x)))) SCC Processor: #sccs: 1 #rules: 1 #arcs: 2/4 DPs: f#(g(x)) -> f#(x) TRS: f(g(x)) -> f(a(g(g(f(x))),g(f(x)))) Matrix Interpretation Processor: dimension: 1 interpretation: [f#](x0) = x0 + 1, [a](x0, x1) = x0, [f](x0) = 0, [g](x0) = x0 + 1 orientation: f#(g(x)) = x + 2 >= x + 1 = f#(x) f(g(x)) = 0 >= 0 = f(a(g(g(f(x))),g(f(x)))) problem: DPs: TRS: f(g(x)) -> f(a(g(g(f(x))),g(f(x)))) Qed