YES

Problem:
 +(-(x,y),z) -> -(+(x,z),y)
 -(+(x,y),y) -> x

Proof:
 DP Processor:
  DPs:
   +#(-(x,y),z) -> +#(x,z)
   +#(-(x,y),z) -> -#(+(x,z),y)
  TRS:
   +(-(x,y),z) -> -(+(x,z),y)
   -(+(x,y),y) -> x
  CDG Processor:
   DPs:
    +#(-(x,y),z) -> +#(x,z)
    +#(-(x,y),z) -> -#(+(x,z),y)
   TRS:
    +(-(x,y),z) -> -(+(x,z),y)
    -(+(x,y),y) -> x
   graph:
    +#(-(x,y),z) -> +#(x,z) -> +#(-(x,y),z) -> +#(x,z)
    +#(-(x,y),z) -> +#(x,z) -> +#(-(x,y),z) -> -#(+(x,z),y)
   Restore Modifier:
    DPs:
     +#(-(x,y),z) -> +#(x,z)
     +#(-(x,y),z) -> -#(+(x,z),y)
    TRS:
     +(-(x,y),z) -> -(+(x,z),y)
     -(+(x,y),y) -> x
    SCC Processor:
     #sccs: 1
     #rules: 1
     #arcs: 2/4
     DPs:
      +#(-(x,y),z) -> +#(x,z)
     TRS:
      +(-(x,y),z) -> -(+(x,z),y)
      -(+(x,y),y) -> x
     Matrix Interpretation Processor:
      dimension: 1
      interpretation:
       [+#](x0, x1) = x0 + 1,
       
       [+](x0, x1) = x0,
       
       [-](x0, x1) = x0 + 1
      orientation:
       +#(-(x,y),z) = x + 2 >= x + 1 = +#(x,z)
       
       +(-(x,y),z) = x + 1 >= x + 1 = -(+(x,z),y)
       
       -(+(x,y),y) = x + 1 >= x = x
      problem:
       DPs:
        
       TRS:
        +(-(x,y),z) -> -(+(x,z),y)
        -(+(x,y),y) -> x
      Qed