YES Problem: f(0()) -> s(0()) f(s(0())) -> s(0()) f(s(s(x))) -> f(f(s(x))) Proof: DP Processor: DPs: f#(s(s(x))) -> f#(s(x)) f#(s(s(x))) -> f#(f(s(x))) TRS: f(0()) -> s(0()) f(s(0())) -> s(0()) f(s(s(x))) -> f(f(s(x))) ADG Processor: DPs: f#(s(s(x))) -> f#(s(x)) f#(s(s(x))) -> f#(f(s(x))) TRS: f(0()) -> s(0()) f(s(0())) -> s(0()) f(s(s(x))) -> f(f(s(x))) graph: f#(s(s(x))) -> f#(s(x)) -> f#(s(s(x))) -> f#(s(x)) f#(s(s(x))) -> f#(s(x)) -> f#(s(s(x))) -> f#(f(s(x))) Restore Modifier: DPs: f#(s(s(x))) -> f#(s(x)) f#(s(s(x))) -> f#(f(s(x))) TRS: f(0()) -> s(0()) f(s(0())) -> s(0()) f(s(s(x))) -> f(f(s(x))) SCC Processor: #sccs: 1 #rules: 1 #arcs: 2/4 DPs: f#(s(s(x))) -> f#(s(x)) TRS: f(0()) -> s(0()) f(s(0())) -> s(0()) f(s(s(x))) -> f(f(s(x))) Matrix Interpretation Processor: dimension: 1 interpretation: [f#](x0) = x0, [s](x0) = x0 + 1, [f](x0) = x0 + 1, [0] = 1 orientation: f#(s(s(x))) = x + 2 >= x + 1 = f#(s(x)) f(0()) = 2 >= 2 = s(0()) f(s(0())) = 3 >= 2 = s(0()) f(s(s(x))) = x + 3 >= x + 3 = f(f(s(x))) problem: DPs: TRS: f(0()) -> s(0()) f(s(0())) -> s(0()) f(s(s(x))) -> f(f(s(x))) Qed