YES Problem: f(s(0()),g(x)) -> f(x,g(x)) g(s(x)) -> g(x) Proof: DP Processor: DPs: f#(s(0()),g(x)) -> f#(x,g(x)) g#(s(x)) -> g#(x) TRS: f(s(0()),g(x)) -> f(x,g(x)) g(s(x)) -> g(x) TDG Processor: DPs: f#(s(0()),g(x)) -> f#(x,g(x)) g#(s(x)) -> g#(x) TRS: f(s(0()),g(x)) -> f(x,g(x)) g(s(x)) -> g(x) graph: g#(s(x)) -> g#(x) -> g#(s(x)) -> g#(x) f#(s(0()),g(x)) -> f#(x,g(x)) -> f#(s(0()),g(x)) -> f#(x,g(x)) EDG Processor: DPs: f#(s(0()),g(x)) -> f#(x,g(x)) g#(s(x)) -> g#(x) TRS: f(s(0()),g(x)) -> f(x,g(x)) g(s(x)) -> g(x) graph: g#(s(x)) -> g#(x) -> g#(s(x)) -> g#(x) SCC Processor: #sccs: 1 #rules: 1 #arcs: 1/4 DPs: g#(s(x)) -> g#(x) TRS: f(s(0()),g(x)) -> f(x,g(x)) g(s(x)) -> g(x) Matrix Interpretation Processor: dimension: 1 interpretation: [g#](x0) = x0 + 1, [f](x0, x1) = 0, [g](x0) = 0, [s](x0) = x0 + 1, [0] = 1 orientation: g#(s(x)) = x + 2 >= x + 1 = g#(x) f(s(0()),g(x)) = 0 >= 0 = f(x,g(x)) g(s(x)) = 0 >= 0 = g(x) problem: DPs: TRS: f(s(0()),g(x)) -> f(x,g(x)) g(s(x)) -> g(x) Qed