YES Problem: f(0()) -> cons(0()) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() Proof: DP Processor: DPs: f#(s(0())) -> p#(s(0())) f#(s(0())) -> f#(p(s(0()))) TRS: f(0()) -> cons(0()) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() TDG Processor: DPs: f#(s(0())) -> p#(s(0())) f#(s(0())) -> f#(p(s(0()))) TRS: f(0()) -> cons(0()) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() graph: f#(s(0())) -> f#(p(s(0()))) -> f#(s(0())) -> f#(p(s(0()))) f#(s(0())) -> f#(p(s(0()))) -> f#(s(0())) -> p#(s(0())) SCC Processor: #sccs: 1 #rules: 1 #arcs: 2/4 DPs: f#(s(0())) -> f#(p(s(0()))) TRS: f(0()) -> cons(0()) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() Matrix Interpretation Processor: dimension: 1 interpretation: [f#](x0) = x0 + 1, [p](x0) = 1, [s](x0) = x0 + 1, [cons](x0) = 0, [f](x0) = 0, [0] = 1 orientation: f#(s(0())) = 3 >= 2 = f#(p(s(0()))) f(0()) = 0 >= 0 = cons(0()) f(s(0())) = 0 >= 0 = f(p(s(0()))) p(s(0())) = 1 >= 1 = 0() problem: DPs: TRS: f(0()) -> cons(0()) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() Qed