MAYBE Problem: f(g(x),s(0())) -> f(g(x),g(x)) g(s(x)) -> s(g(x)) g(0()) -> 0() Proof: DP Processor: DPs: f#(g(x),s(0())) -> f#(g(x),g(x)) g#(s(x)) -> g#(x) TRS: f(g(x),s(0())) -> f(g(x),g(x)) g(s(x)) -> s(g(x)) g(0()) -> 0() Usable Rule Processor: DPs: f#(g(x),s(0())) -> f#(g(x),g(x)) g#(s(x)) -> g#(x) TRS: g(s(x)) -> s(g(x)) g(0()) -> 0() EDG Processor: DPs: f#(g(x),s(0())) -> f#(g(x),g(x)) g#(s(x)) -> g#(x) TRS: g(s(x)) -> s(g(x)) g(0()) -> 0() graph: g#(s(x)) -> g#(x) -> g#(s(x)) -> g#(x) f#(g(x),s(0())) -> f#(g(x),g(x)) -> f#(g(x),s(0())) -> f#(g(x),g(x)) Restore Modifier: DPs: f#(g(x),s(0())) -> f#(g(x),g(x)) g#(s(x)) -> g#(x) TRS: f(g(x),s(0())) -> f(g(x),g(x)) g(s(x)) -> s(g(x)) g(0()) -> 0() SCC Processor: #sccs: 2 #rules: 2 #arcs: 2/4 DPs: f#(g(x),s(0())) -> f#(g(x),g(x)) TRS: f(g(x),s(0())) -> f(g(x),g(x)) g(s(x)) -> s(g(x)) g(0()) -> 0() Open DPs: g#(s(x)) -> g#(x) TRS: f(g(x),s(0())) -> f(g(x),g(x)) g(s(x)) -> s(g(x)) g(0()) -> 0() Matrix Interpretation Processor: dimension: 1 interpretation: [g#](x0) = x0 + 1, [f](x0, x1) = 0, [s](x0) = x0 + 1, [0] = 1, [g](x0) = x0 + 1 orientation: g#(s(x)) = x + 2 >= x + 1 = g#(x) f(g(x),s(0())) = 0 >= 0 = f(g(x),g(x)) g(s(x)) = x + 2 >= x + 2 = s(g(x)) g(0()) = 2 >= 1 = 0() problem: DPs: TRS: f(g(x),s(0())) -> f(g(x),g(x)) g(s(x)) -> s(g(x)) g(0()) -> 0() Qed