MAYBE Problem: f(0(),1(),g(x,y),z) -> f(g(x,y),g(x,y),g(x,y),h(x)) g(0(),1()) -> 0() g(0(),1()) -> 1() h(g(x,y)) -> h(x) Proof: DP Processor: DPs: f#(0(),1(),g(x,y),z) -> h#(x) f#(0(),1(),g(x,y),z) -> f#(g(x,y),g(x,y),g(x,y),h(x)) h#(g(x,y)) -> h#(x) TRS: f(0(),1(),g(x,y),z) -> f(g(x,y),g(x,y),g(x,y),h(x)) g(0(),1()) -> 0() g(0(),1()) -> 1() h(g(x,y)) -> h(x) Usable Rule Processor: DPs: f#(0(),1(),g(x,y),z) -> h#(x) f#(0(),1(),g(x,y),z) -> f#(g(x,y),g(x,y),g(x,y),h(x)) h#(g(x,y)) -> h#(x) TRS: h(g(x,y)) -> h(x) g(0(),1()) -> 0() g(0(),1()) -> 1() EDG Processor: DPs: f#(0(),1(),g(x,y),z) -> h#(x) f#(0(),1(),g(x,y),z) -> f#(g(x,y),g(x,y),g(x,y),h(x)) h#(g(x,y)) -> h#(x) TRS: h(g(x,y)) -> h(x) g(0(),1()) -> 0() g(0(),1()) -> 1() graph: h#(g(x,y)) -> h#(x) -> h#(g(x,y)) -> h#(x) f#(0(),1(),g(x,y),z) -> h#(x) -> h#(g(x,y)) -> h#(x) f#(0(),1(),g(x,y),z) -> f#(g(x,y),g(x,y),g(x,y),h(x)) -> f#(0(),1(),g(x,y),z) -> h#(x) f#(0(),1(),g(x,y),z) -> f#(g(x,y),g(x,y),g(x,y),h(x)) -> f#(0(),1(),g(x,y),z) -> f#(g(x,y),g(x,y),g(x,y),h(x)) Restore Modifier: DPs: f#(0(),1(),g(x,y),z) -> h#(x) f#(0(),1(),g(x,y),z) -> f#(g(x,y),g(x,y),g(x,y),h(x)) h#(g(x,y)) -> h#(x) TRS: f(0(),1(),g(x,y),z) -> f(g(x,y),g(x,y),g(x,y),h(x)) g(0(),1()) -> 0() g(0(),1()) -> 1() h(g(x,y)) -> h(x) SCC Processor: #sccs: 2 #rules: 2 #arcs: 4/9 DPs: f#(0(),1(),g(x,y),z) -> f#(g(x,y),g(x,y),g(x,y),h(x)) TRS: f(0(),1(),g(x,y),z) -> f(g(x,y),g(x,y),g(x,y),h(x)) g(0(),1()) -> 0() g(0(),1()) -> 1() h(g(x,y)) -> h(x) Open DPs: h#(g(x,y)) -> h#(x) TRS: f(0(),1(),g(x,y),z) -> f(g(x,y),g(x,y),g(x,y),h(x)) g(0(),1()) -> 0() g(0(),1()) -> 1() h(g(x,y)) -> h(x) Matrix Interpretation Processor: dimension: 1 interpretation: [h#](x0) = x0 + 1, [h](x0) = x0 + 1, [f](x0, x1, x2, x3) = x2 + 1, [g](x0, x1) = x0 + x1 + 1, [1] = 1, [0] = 0 orientation: h#(g(x,y)) = x + y + 2 >= x + 1 = h#(x) f(0(),1(),g(x,y),z) = x + y + 2 >= x + y + 2 = f(g(x,y),g(x,y),g(x,y),h(x)) g(0(),1()) = 2 >= 0 = 0() g(0(),1()) = 2 >= 1 = 1() h(g(x,y)) = x + y + 2 >= x + 1 = h(x) problem: DPs: TRS: f(0(),1(),g(x,y),z) -> f(g(x,y),g(x,y),g(x,y),h(x)) g(0(),1()) -> 0() g(0(),1()) -> 1() h(g(x,y)) -> h(x) Qed