MAYBE Problem: f(s(x),y,b()) -> f(g(h(x)),y,i(y)) g(h(x)) -> g(x) g(s(x)) -> s(x) g(0()) -> s(0()) h(0()) -> a() i(0()) -> b() i(s(y)) -> i(y) Proof: DP Processor: DPs: f#(s(x),y,b()) -> i#(y) f#(s(x),y,b()) -> h#(x) f#(s(x),y,b()) -> g#(h(x)) f#(s(x),y,b()) -> f#(g(h(x)),y,i(y)) g#(h(x)) -> g#(x) i#(s(y)) -> i#(y) TRS: f(s(x),y,b()) -> f(g(h(x)),y,i(y)) g(h(x)) -> g(x) g(s(x)) -> s(x) g(0()) -> s(0()) h(0()) -> a() i(0()) -> b() i(s(y)) -> i(y) Usable Rule Processor: DPs: f#(s(x),y,b()) -> i#(y) f#(s(x),y,b()) -> h#(x) f#(s(x),y,b()) -> g#(h(x)) f#(s(x),y,b()) -> f#(g(h(x)),y,i(y)) g#(h(x)) -> g#(x) i#(s(y)) -> i#(y) TRS: h(0()) -> a() i(0()) -> b() i(s(y)) -> i(y) g(h(x)) -> g(x) g(s(x)) -> s(x) g(0()) -> s(0()) EDG Processor: DPs: f#(s(x),y,b()) -> i#(y) f#(s(x),y,b()) -> h#(x) f#(s(x),y,b()) -> g#(h(x)) f#(s(x),y,b()) -> f#(g(h(x)),y,i(y)) g#(h(x)) -> g#(x) i#(s(y)) -> i#(y) TRS: h(0()) -> a() i(0()) -> b() i(s(y)) -> i(y) g(h(x)) -> g(x) g(s(x)) -> s(x) g(0()) -> s(0()) graph: g#(h(x)) -> g#(x) -> g#(h(x)) -> g#(x) i#(s(y)) -> i#(y) -> i#(s(y)) -> i#(y) f#(s(x),y,b()) -> g#(h(x)) -> g#(h(x)) -> g#(x) f#(s(x),y,b()) -> i#(y) -> i#(s(y)) -> i#(y) f#(s(x),y,b()) -> f#(g(h(x)),y,i(y)) -> f#(s(x),y,b()) -> i#(y) f#(s(x),y,b()) -> f#(g(h(x)),y,i(y)) -> f#(s(x),y,b()) -> h#(x) f#(s(x),y,b()) -> f#(g(h(x)),y,i(y)) -> f#(s(x),y,b()) -> g#(h(x)) f#(s(x),y,b()) -> f#(g(h(x)),y,i(y)) -> f#(s(x),y,b()) -> f#(g(h(x)),y,i(y)) Restore Modifier: DPs: f#(s(x),y,b()) -> i#(y) f#(s(x),y,b()) -> h#(x) f#(s(x),y,b()) -> g#(h(x)) f#(s(x),y,b()) -> f#(g(h(x)),y,i(y)) g#(h(x)) -> g#(x) i#(s(y)) -> i#(y) TRS: f(s(x),y,b()) -> f(g(h(x)),y,i(y)) g(h(x)) -> g(x) g(s(x)) -> s(x) g(0()) -> s(0()) h(0()) -> a() i(0()) -> b() i(s(y)) -> i(y) SCC Processor: #sccs: 3 #rules: 3 #arcs: 8/36 DPs: f#(s(x),y,b()) -> f#(g(h(x)),y,i(y)) TRS: f(s(x),y,b()) -> f(g(h(x)),y,i(y)) g(h(x)) -> g(x) g(s(x)) -> s(x) g(0()) -> s(0()) h(0()) -> a() i(0()) -> b() i(s(y)) -> i(y) Open DPs: i#(s(y)) -> i#(y) TRS: f(s(x),y,b()) -> f(g(h(x)),y,i(y)) g(h(x)) -> g(x) g(s(x)) -> s(x) g(0()) -> s(0()) h(0()) -> a() i(0()) -> b() i(s(y)) -> i(y) Matrix Interpretation Processor: dimension: 1 interpretation: [i#](x0) = x0 + 1, [a] = 1, [0] = 0, [i](x0) = 1, [g](x0) = x0 + 1, [h](x0) = x0 + 1, [f](x0, x1, x2) = 0, [b] = 0, [s](x0) = x0 + 1 orientation: i#(s(y)) = y + 2 >= y + 1 = i#(y) f(s(x),y,b()) = 0 >= 0 = f(g(h(x)),y,i(y)) g(h(x)) = x + 2 >= x + 1 = g(x) g(s(x)) = x + 2 >= x + 1 = s(x) g(0()) = 1 >= 1 = s(0()) h(0()) = 1 >= 1 = a() i(0()) = 1 >= 0 = b() i(s(y)) = 1 >= 1 = i(y) problem: DPs: TRS: f(s(x),y,b()) -> f(g(h(x)),y,i(y)) g(h(x)) -> g(x) g(s(x)) -> s(x) g(0()) -> s(0()) h(0()) -> a() i(0()) -> b() i(s(y)) -> i(y) Qed DPs: g#(h(x)) -> g#(x) TRS: f(s(x),y,b()) -> f(g(h(x)),y,i(y)) g(h(x)) -> g(x) g(s(x)) -> s(x) g(0()) -> s(0()) h(0()) -> a() i(0()) -> b() i(s(y)) -> i(y) Matrix Interpretation Processor: dimension: 1 interpretation: [g#](x0) = x0 + 1, [a] = 1, [0] = 0, [i](x0) = 0, [g](x0) = 0, [h](x0) = x0 + 1, [f](x0, x1, x2) = 0, [b] = 0, [s](x0) = 0 orientation: g#(h(x)) = x + 2 >= x + 1 = g#(x) f(s(x),y,b()) = 0 >= 0 = f(g(h(x)),y,i(y)) g(h(x)) = 0 >= 0 = g(x) g(s(x)) = 0 >= 0 = s(x) g(0()) = 0 >= 0 = s(0()) h(0()) = 1 >= 1 = a() i(0()) = 0 >= 0 = b() i(s(y)) = 0 >= 0 = i(y) problem: DPs: TRS: f(s(x),y,b()) -> f(g(h(x)),y,i(y)) g(h(x)) -> g(x) g(s(x)) -> s(x) g(0()) -> s(0()) h(0()) -> a() i(0()) -> b() i(s(y)) -> i(y) Qed