MAYBE Problem: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) f(0(),s(0()),X) -> f(X,+(X,X),X) g(X,Y) -> X g(X,Y) -> Y Proof: DP Processor: DPs: +#(X,s(Y)) -> +#(X,Y) f#(0(),s(0()),X) -> +#(X,X) f#(0(),s(0()),X) -> f#(X,+(X,X),X) TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) f(0(),s(0()),X) -> f(X,+(X,X),X) g(X,Y) -> X g(X,Y) -> Y Usable Rule Processor: DPs: +#(X,s(Y)) -> +#(X,Y) f#(0(),s(0()),X) -> +#(X,X) f#(0(),s(0()),X) -> f#(X,+(X,X),X) TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) EDG Processor: DPs: +#(X,s(Y)) -> +#(X,Y) f#(0(),s(0()),X) -> +#(X,X) f#(0(),s(0()),X) -> f#(X,+(X,X),X) TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) graph: f#(0(),s(0()),X) -> f#(X,+(X,X),X) -> f#(0(),s(0()),X) -> +#(X,X) f#(0(),s(0()),X) -> f#(X,+(X,X),X) -> f#(0(),s(0()),X) -> f#(X,+(X,X),X) f#(0(),s(0()),X) -> +#(X,X) -> +#(X,s(Y)) -> +#(X,Y) +#(X,s(Y)) -> +#(X,Y) -> +#(X,s(Y)) -> +#(X,Y) Restore Modifier: DPs: +#(X,s(Y)) -> +#(X,Y) f#(0(),s(0()),X) -> +#(X,X) f#(0(),s(0()),X) -> f#(X,+(X,X),X) TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) f(0(),s(0()),X) -> f(X,+(X,X),X) g(X,Y) -> X g(X,Y) -> Y SCC Processor: #sccs: 2 #rules: 2 #arcs: 4/9 DPs: f#(0(),s(0()),X) -> f#(X,+(X,X),X) TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) f(0(),s(0()),X) -> f(X,+(X,X),X) g(X,Y) -> X g(X,Y) -> Y Open DPs: +#(X,s(Y)) -> +#(X,Y) TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) f(0(),s(0()),X) -> f(X,+(X,X),X) g(X,Y) -> X g(X,Y) -> Y Matrix Interpretation Processor: dimension: 1 interpretation: [+#](x0, x1) = x1 + 1, [g](x0, x1) = x0 + x1, [f](x0, x1, x2) = 0, [s](x0) = x0 + 1, [+](x0, x1) = x0 + x1 + 1, [0] = 0 orientation: +#(X,s(Y)) = Y + 2 >= Y + 1 = +#(X,Y) +(X,0()) = X + 1 >= X = X +(X,s(Y)) = X + Y + 2 >= X + Y + 2 = s(+(X,Y)) f(0(),s(0()),X) = 0 >= 0 = f(X,+(X,X),X) g(X,Y) = X + Y >= X = X g(X,Y) = X + Y >= Y = Y problem: DPs: TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) f(0(),s(0()),X) -> f(X,+(X,X),X) g(X,Y) -> X g(X,Y) -> Y Qed