YES Problem: h(X,Z) -> f(X,s(X),Z) f(X,Y,g(X,Y)) -> h(0(),g(X,Y)) g(0(),Y) -> 0() g(X,s(Y)) -> g(X,Y) Proof: DP Processor: DPs: h#(X,Z) -> f#(X,s(X),Z) f#(X,Y,g(X,Y)) -> h#(0(),g(X,Y)) g#(X,s(Y)) -> g#(X,Y) TRS: h(X,Z) -> f(X,s(X),Z) f(X,Y,g(X,Y)) -> h(0(),g(X,Y)) g(0(),Y) -> 0() g(X,s(Y)) -> g(X,Y) Usable Rule Processor: DPs: h#(X,Z) -> f#(X,s(X),Z) f#(X,Y,g(X,Y)) -> h#(0(),g(X,Y)) g#(X,s(Y)) -> g#(X,Y) TRS: g(0(),Y) -> 0() g(X,s(Y)) -> g(X,Y) CDG Processor: DPs: h#(X,Z) -> f#(X,s(X),Z) f#(X,Y,g(X,Y)) -> h#(0(),g(X,Y)) g#(X,s(Y)) -> g#(X,Y) TRS: g(0(),Y) -> 0() g(X,s(Y)) -> g(X,Y) graph: g#(X,s(Y)) -> g#(X,Y) -> g#(X,s(Y)) -> g#(X,Y) f#(X,Y,g(X,Y)) -> h#(0(),g(X,Y)) -> h#(X,Z) -> f#(X,s(X),Z) Restore Modifier: DPs: h#(X,Z) -> f#(X,s(X),Z) f#(X,Y,g(X,Y)) -> h#(0(),g(X,Y)) g#(X,s(Y)) -> g#(X,Y) TRS: h(X,Z) -> f(X,s(X),Z) f(X,Y,g(X,Y)) -> h(0(),g(X,Y)) g(0(),Y) -> 0() g(X,s(Y)) -> g(X,Y) SCC Processor: #sccs: 1 #rules: 1 #arcs: 2/9 DPs: g#(X,s(Y)) -> g#(X,Y) TRS: h(X,Z) -> f(X,s(X),Z) f(X,Y,g(X,Y)) -> h(0(),g(X,Y)) g(0(),Y) -> 0() g(X,s(Y)) -> g(X,Y) Matrix Interpretation Processor: dimension: 1 interpretation: [g#](x0, x1) = x1 + 1, [0] = 0, [g](x0, x1) = 0, [f](x0, x1, x2) = 0, [s](x0) = x0 + 1, [h](x0, x1) = 0 orientation: g#(X,s(Y)) = Y + 2 >= Y + 1 = g#(X,Y) h(X,Z) = 0 >= 0 = f(X,s(X),Z) f(X,Y,g(X,Y)) = 0 >= 0 = h(0(),g(X,Y)) g(0(),Y) = 0 >= 0 = 0() g(X,s(Y)) = 0 >= 0 = g(X,Y) problem: DPs: TRS: h(X,Z) -> f(X,s(X),Z) f(X,Y,g(X,Y)) -> h(0(),g(X,Y)) g(0(),Y) -> 0() g(X,s(Y)) -> g(X,Y) Qed