MAYBE Problem: f(X,g(X)) -> f(1(),g(X)) g(1()) -> g(0()) Proof: DP Processor: DPs: f#(X,g(X)) -> f#(1(),g(X)) g#(1()) -> g#(0()) TRS: f(X,g(X)) -> f(1(),g(X)) g(1()) -> g(0()) Usable Rule Processor: DPs: f#(X,g(X)) -> f#(1(),g(X)) g#(1()) -> g#(0()) TRS: g(1()) -> g(0()) TDG Processor: DPs: f#(X,g(X)) -> f#(1(),g(X)) g#(1()) -> g#(0()) TRS: g(1()) -> g(0()) graph: g#(1()) -> g#(0()) -> g#(1()) -> g#(0()) f#(X,g(X)) -> f#(1(),g(X)) -> f#(X,g(X)) -> f#(1(),g(X)) Restore Modifier: DPs: f#(X,g(X)) -> f#(1(),g(X)) g#(1()) -> g#(0()) TRS: f(X,g(X)) -> f(1(),g(X)) g(1()) -> g(0()) SCC Processor: #sccs: 2 #rules: 2 #arcs: 2/4 DPs: f#(X,g(X)) -> f#(1(),g(X)) TRS: f(X,g(X)) -> f(1(),g(X)) g(1()) -> g(0()) Open DPs: g#(1()) -> g#(0()) TRS: f(X,g(X)) -> f(1(),g(X)) g(1()) -> g(0()) Matrix Interpretation Processor: dimension: 1 interpretation: [g#](x0) = x0, [0] = 0, [1] = 1, [f](x0, x1) = x1 + 1, [g](x0) = x0 + 1 orientation: g#(1()) = 1 >= 0 = g#(0()) f(X,g(X)) = X + 2 >= X + 2 = f(1(),g(X)) g(1()) = 2 >= 1 = g(0()) problem: DPs: TRS: f(X,g(X)) -> f(1(),g(X)) g(1()) -> g(0()) Qed