MAYBE Problem: f(a(x),y,s(z),u) -> f(a(b()),y,z,g(x,y,s(z),u)) g(x,y,z,u) -> h(x,y,z,u) h(b(),y,z,u) -> f(y,y,z,u) a(b()) -> c() Proof: DP Processor: DPs: f#(a(x),y,s(z),u) -> g#(x,y,s(z),u) f#(a(x),y,s(z),u) -> a#(b()) f#(a(x),y,s(z),u) -> f#(a(b()),y,z,g(x,y,s(z),u)) g#(x,y,z,u) -> h#(x,y,z,u) h#(b(),y,z,u) -> f#(y,y,z,u) TRS: f(a(x),y,s(z),u) -> f(a(b()),y,z,g(x,y,s(z),u)) g(x,y,z,u) -> h(x,y,z,u) h(b(),y,z,u) -> f(y,y,z,u) a(b()) -> c() TDG Processor: DPs: f#(a(x),y,s(z),u) -> g#(x,y,s(z),u) f#(a(x),y,s(z),u) -> a#(b()) f#(a(x),y,s(z),u) -> f#(a(b()),y,z,g(x,y,s(z),u)) g#(x,y,z,u) -> h#(x,y,z,u) h#(b(),y,z,u) -> f#(y,y,z,u) TRS: f(a(x),y,s(z),u) -> f(a(b()),y,z,g(x,y,s(z),u)) g(x,y,z,u) -> h(x,y,z,u) h(b(),y,z,u) -> f(y,y,z,u) a(b()) -> c() graph: h#(b(),y,z,u) -> f#(y,y,z,u) -> f#(a(x),y,s(z),u) -> f#(a(b()),y,z,g(x,y,s(z),u)) h#(b(),y,z,u) -> f#(y,y,z,u) -> f#(a(x),y,s(z),u) -> a#(b()) h#(b(),y,z,u) -> f#(y,y,z,u) -> f#(a(x),y,s(z),u) -> g#(x,y,s(z),u) g#(x,y,z,u) -> h#(x,y,z,u) -> h#(b(),y,z,u) -> f#(y,y,z,u) f#(a(x),y,s(z),u) -> g#(x,y,s(z),u) -> g#(x,y,z,u) -> h#(x,y,z,u) f#(a(x),y,s(z),u) -> f#(a(b()),y,z,g(x,y,s(z),u)) -> f#(a(x),y,s(z),u) -> f#(a(b()),y,z,g(x,y,s(z),u)) f#(a(x),y,s(z),u) -> f#(a(b()),y,z,g(x,y,s(z),u)) -> f#(a(x),y,s(z),u) -> a#(b()) f#(a(x),y,s(z),u) -> f#(a(b()),y,z,g(x,y,s(z),u)) -> f#(a(x),y,s(z),u) -> g#(x,y,s(z),u) Restore Modifier: DPs: f#(a(x),y,s(z),u) -> g#(x,y,s(z),u) f#(a(x),y,s(z),u) -> a#(b()) f#(a(x),y,s(z),u) -> f#(a(b()),y,z,g(x,y,s(z),u)) g#(x,y,z,u) -> h#(x,y,z,u) h#(b(),y,z,u) -> f#(y,y,z,u) TRS: f(a(x),y,s(z),u) -> f(a(b()),y,z,g(x,y,s(z),u)) g(x,y,z,u) -> h(x,y,z,u) h(b(),y,z,u) -> f(y,y,z,u) a(b()) -> c() SCC Processor: #sccs: 1 #rules: 4 #arcs: 8/25 DPs: h#(b(),y,z,u) -> f#(y,y,z,u) f#(a(x),y,s(z),u) -> g#(x,y,s(z),u) g#(x,y,z,u) -> h#(x,y,z,u) f#(a(x),y,s(z),u) -> f#(a(b()),y,z,g(x,y,s(z),u)) TRS: f(a(x),y,s(z),u) -> f(a(b()),y,z,g(x,y,s(z),u)) g(x,y,z,u) -> h(x,y,z,u) h(b(),y,z,u) -> f(y,y,z,u) a(b()) -> c() Matrix Interpretation Processor: dimension: 1 interpretation: [h#](x0, x1, x2, x3) = x2, [g#](x0, x1, x2, x3) = x2, [f#](x0, x1, x2, x3) = x2, [c] = 0, [h](x0, x1, x2, x3) = x0 + x3, [g](x0, x1, x2, x3) = x0 + x3, [b] = 1, [f](x0, x1, x2, x3) = 1, [s](x0) = x0 + 1, [a](x0) = 0 orientation: h#(b(),y,z,u) = z >= z = f#(y,y,z,u) f#(a(x),y,s(z),u) = z + 1 >= z + 1 = g#(x,y,s(z),u) g#(x,y,z,u) = z >= z = h#(x,y,z,u) f#(a(x),y,s(z),u) = z + 1 >= z = f#(a(b()),y,z,g(x,y,s(z),u)) f(a(x),y,s(z),u) = 1 >= 1 = f(a(b()),y,z,g(x,y,s(z),u)) g(x,y,z,u) = u + x >= u + x = h(x,y,z,u) h(b(),y,z,u) = u + 1 >= 1 = f(y,y,z,u) a(b()) = 0 >= 0 = c() problem: DPs: h#(b(),y,z,u) -> f#(y,y,z,u) f#(a(x),y,s(z),u) -> g#(x,y,s(z),u) g#(x,y,z,u) -> h#(x,y,z,u) TRS: f(a(x),y,s(z),u) -> f(a(b()),y,z,g(x,y,s(z),u)) g(x,y,z,u) -> h(x,y,z,u) h(b(),y,z,u) -> f(y,y,z,u) a(b()) -> c() Open