MAYBE Problem: h(f(f(x))) -> h(f(g(f(x)))) f(g(f(x))) -> f(f(x)) Proof: DP Processor: DPs: h#(f(f(x))) -> f#(g(f(x))) h#(f(f(x))) -> h#(f(g(f(x)))) f#(g(f(x))) -> f#(f(x)) TRS: h(f(f(x))) -> h(f(g(f(x)))) f(g(f(x))) -> f(f(x)) Usable Rule Processor: DPs: h#(f(f(x))) -> f#(g(f(x))) h#(f(f(x))) -> h#(f(g(f(x)))) f#(g(f(x))) -> f#(f(x)) TRS: f(g(f(x))) -> f(f(x)) TDG Processor: DPs: h#(f(f(x))) -> f#(g(f(x))) h#(f(f(x))) -> h#(f(g(f(x)))) f#(g(f(x))) -> f#(f(x)) TRS: f(g(f(x))) -> f(f(x)) graph: f#(g(f(x))) -> f#(f(x)) -> f#(g(f(x))) -> f#(f(x)) h#(f(f(x))) -> f#(g(f(x))) -> f#(g(f(x))) -> f#(f(x)) h#(f(f(x))) -> h#(f(g(f(x)))) -> h#(f(f(x))) -> h#(f(g(f(x)))) h#(f(f(x))) -> h#(f(g(f(x)))) -> h#(f(f(x))) -> f#(g(f(x))) Restore Modifier: DPs: h#(f(f(x))) -> f#(g(f(x))) h#(f(f(x))) -> h#(f(g(f(x)))) f#(g(f(x))) -> f#(f(x)) TRS: h(f(f(x))) -> h(f(g(f(x)))) f(g(f(x))) -> f(f(x)) SCC Processor: #sccs: 2 #rules: 2 #arcs: 4/9 DPs: h#(f(f(x))) -> h#(f(g(f(x)))) TRS: h(f(f(x))) -> h(f(g(f(x)))) f(g(f(x))) -> f(f(x)) Open DPs: f#(g(f(x))) -> f#(f(x)) TRS: h(f(f(x))) -> h(f(g(f(x)))) f(g(f(x))) -> f(f(x)) Matrix Interpretation Processor: dimension: 1 interpretation: [f#](x0) = x0, [g](x0) = 1, [h](x0) = 0, [f](x0) = 0 orientation: f#(g(f(x))) = 1 >= 0 = f#(f(x)) h(f(f(x))) = 0 >= 0 = h(f(g(f(x)))) f(g(f(x))) = 0 >= 0 = f(f(x)) problem: DPs: TRS: h(f(f(x))) -> h(f(g(f(x)))) f(g(f(x))) -> f(f(x)) Qed