YES(?,O(n^1)) Problem: g(x,a(),b()) -> g(b(),b(),a()) Proof: Bounds Processor: bound: 1 enrichment: match automaton: final states: {3,2,1} transitions: g1(6,6,5) -> 1* b1() -> 6* a1() -> 5* g0(1,1,1) -> 1* g0(1,3,1) -> 1* g0(1,2,3) -> 1* g0(2,2,1) -> 1* g0(2,1,3) -> 1* g0(2,3,3) -> 1* g0(3,1,1) -> 1* g0(1,1,2) -> 1* g0(3,3,1) -> 1* g0(1,3,2) -> 1* g0(3,2,3) -> 1* g0(2,2,2) -> 1* g0(3,1,2) -> 1* g0(3,3,2) -> 1* g0(1,2,1) -> 1* g0(1,1,3) -> 1* g0(1,3,3) -> 1* g0(2,1,1) -> 1* g0(2,3,1) -> 1* g0(2,2,3) -> 1* g0(3,2,1) -> 1* g0(1,2,2) -> 1* g0(3,1,3) -> 1* g0(3,3,3) -> 1* g0(2,1,2) -> 1* g0(2,3,2) -> 1* g0(3,2,2) -> 1* a0() -> 2* b0() -> 3* problem: Qed