YES(?,O(n^1)) Problem: max(L(x)) -> x max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) Proof: Complexity Transformation Processor: strict: max(L(x)) -> x max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) weak: Matrix Interpretation Processor: dimension: 1 max_matrix: 1 interpretation: [s](x0) = x0 + 1, [N](x0, x1) = x0 + x1, [0] = 0, [max](x0) = x0, [L](x0) = x0 orientation: max(L(x)) = x >= x = x max(N(L(0()),L(y))) = y >= y = y max(N(L(s(x)),L(s(y)))) = x + y + 2 >= x + y + 1 = s(max(N(L(x),L(y)))) max(N(L(x),N(y,z))) = x + y + z >= x + y + z = max(N(L(x),L(max(N(y,z))))) problem: strict: max(L(x)) -> x max(N(L(0()),L(y))) -> y max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) weak: max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Matrix Interpretation Processor: dimension: 1 max_matrix: 1 interpretation: [s](x0) = x0, [N](x0, x1) = x0 + x1, [0] = 0, [max](x0) = x0 + 1, [L](x0) = x0 orientation: max(L(x)) = x + 1 >= x = x max(N(L(0()),L(y))) = y + 1 >= y = y max(N(L(x),N(y,z))) = x + y + z + 1 >= x + y + z + 2 = max(N(L(x),L(max(N(y,z))))) max(N(L(s(x)),L(s(y)))) = x + y + 1 >= x + y + 1 = s(max(N(L(x),L(y)))) problem: strict: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) weak: max(L(x)) -> x max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Bounds Processor: bound: 1 enrichment: match automaton: final states: {6,7} transitions: max1(17) -> 14,6 max1(13) -> 14* N1(6,6) -> 13* N1(7,7) -> 13* N1(6,7) -> 13* N1(16,15) -> 17* N1(7,6) -> 13* L1(7) -> 16* L1(14) -> 15* L1(6) -> 16* s1(6) -> 14* max0(7) -> 6* max0(6) -> 6* N0(6,6) -> 6* N0(7,7) -> 6* N0(6,7) -> 6* N0(7,6) -> 6* L0(7) -> 6* L0(6) -> 6* 00() -> 7* s0(7) -> 6* s0(6) -> 6* 6 -> 14* 7 -> 14,6 14 -> 6* problem: strict: weak: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(L(x)) -> x max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Qed