YES Problem: f(s(x)) -> s(s(f(p(s(x))))) f(0()) -> 0() p(s(x)) -> x Proof: DP Processor: DPs: f#(s(x)) -> p#(s(x)) f#(s(x)) -> f#(p(s(x))) TRS: f(s(x)) -> s(s(f(p(s(x))))) f(0()) -> 0() p(s(x)) -> x EDG Processor: DPs: f#(s(x)) -> p#(s(x)) f#(s(x)) -> f#(p(s(x))) TRS: f(s(x)) -> s(s(f(p(s(x))))) f(0()) -> 0() p(s(x)) -> x graph: f#(s(x)) -> f#(p(s(x))) -> f#(s(x)) -> p#(s(x)) f#(s(x)) -> f#(p(s(x))) -> f#(s(x)) -> f#(p(s(x))) SCC Processor: #sccs: 1 #rules: 1 #arcs: 2/4 DPs: f#(s(x)) -> f#(p(s(x))) TRS: f(s(x)) -> s(s(f(p(s(x))))) f(0()) -> 0() p(s(x)) -> x Usable Rule Processor: DPs: f#(s(x)) -> f#(p(s(x))) TRS: p(s(x)) -> x Bounds Processor: bound: 1 enrichment: match automaton: final states: {5} transitions: f{#,0}(4) -> 5* s0(4) -> 4* p0(4) -> 4* f{#,1}(12) -> 13* p1(11) -> 12* s1(10) -> 11* 4 -> 10* 10 -> 12* 13 -> 5* problem: DPs: TRS: p(s(x)) -> x Qed