YES

Problem:
 p(p(b(a(x0)),x1),p(x2,x3)) -> p(p(b(x2),a(a(b(x1)))),p(x3,x0))

Proof:
 DP Processor:
  DPs:
   p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0)
   p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(b(x2),a(a(b(x1))))
   p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
  TRS:
   p(p(b(a(x0)),x1),p(x2,x3)) -> p(p(b(x2),a(a(b(x1)))),p(x3,x0))
  EDG Processor:
   DPs:
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0)
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(b(x2),a(a(b(x1))))
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
   TRS:
    p(p(b(a(x0)),x1),p(x2,x3)) -> p(p(b(x2),a(a(b(x1)))),p(x3,x0))
   graph:
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0)) ->
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0)
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0)) ->
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(b(x2),a(a(b(x1))))
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0)) ->
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0) ->
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0)
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0) ->
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(b(x2),a(a(b(x1))))
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0) ->
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
   SCC Processor:
    #sccs: 1
    #rules: 2
    #arcs: 6/9
    DPs:
     p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
     p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0)
    TRS:
     p(p(b(a(x0)),x1),p(x2,x3)) -> p(p(b(x2),a(a(b(x1)))),p(x3,x0))
    Matrix Interpretation Processor:
     dimension: 1
     interpretation:
      [p#](x0, x1) = x0 + x1,
      
      [p](x0, x1) = x0 + x1 + 1,
      
      [b](x0) = x0,
      
      [a](x0) = x0
     orientation:
      p#(p(b(a(x0)),x1),p(x2,x3)) = x0 + x1 + x2 + x3 + 2 >= x0 + x1 + x2 + x3 + 2 = p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
      
      p#(p(b(a(x0)),x1),p(x2,x3)) = x0 + x1 + x2 + x3 + 2 >= x0 + x3 = p#(x3,x0)
      
      p(p(b(a(x0)),x1),p(x2,x3)) = x0 + x1 + x2 + x3 + 3 >= x0 + x1 + x2 + x3 + 3 = p(p(b(x2),a(a(b(x1)))),p(x3,x0))
     problem:
      DPs:
       p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
      TRS:
       p(p(b(a(x0)),x1),p(x2,x3)) -> p(p(b(x2),a(a(b(x1)))),p(x3,x0))
     Bounds Processor:
      bound: 2
      enrichment: match-dp
      automaton:
       final states: {5}
       transitions:
        p{#,0}(11,6) -> 5*
        p0(3,1) -> 3*
        p0(3,3) -> 3*
        p0(4,4) -> 6*
        p0(10,9) -> 11*
        p0(1,2) -> 3*
        p0(2,1) -> 3*
        p0(2,3) -> 3*
        p0(3,2) -> 3*
        p0(1,1) -> 3*
        p0(1,3) -> 3*
        p0(2,2) -> 3*
        b0(2) -> 2*
        b0(4) -> 10,7
        b0(1) -> 2*
        b0(3) -> 2*
        a0(7) -> 8*
        a0(2) -> 1*
        a0(1) -> 1*
        a0(8) -> 9*
        a0(3) -> 1*
        p{#,1}(44,18) -> 5*
        p{#,1}(23,18) -> 5*
        p1(43,1) -> 18*
        p1(43,3) -> 18*
        p1(18,1) -> 18*
        p1(18,3) -> 18*
        p1(22,28) -> 29*
        p1(43,21) -> 23*
        p1(39,2) -> 18*
        p1(93,39) -> 18*
        p1(4,2) -> 18*
        p1(29,18) -> 18*
        p1(27,1) -> 18*
        p1(22,1) -> 18*
        p1(27,3) -> 18*
        p1(22,3) -> 18*
        p1(43,2) -> 18*
        p1(22,21) -> 23*
        p1(18,2) -> 18*
        p1(93,18) -> 18*
        p1(39,1) -> 18*
        p1(39,3) -> 18*
        p1(43,28) -> 93*
        p1(4,1) -> 18*
        p1(4,3) -> 18*
        p1(27,2) -> 18*
        p1(22,2) -> 18*
        b1(42) -> 19*
        b1(29) -> 22*
        b1(9) -> 19*
        b1(4) -> 22*
        b1(21) -> 19*
        b1(28) -> 22*
        b1(18) -> 22*
        a1(20) -> 21*
        a1(27) -> 28*
        a1(22) -> 27*
        a1(19) -> 20*
        a1(43) -> 27*
        p{#,2}(44,39) -> 5*
        p2(27,22) -> 39*
        p2(22,22) -> 39*
        p2(2,22) -> 39*
        p2(1,43) -> 39*
        p2(18,27) -> 39*
        p2(3,27) -> 39*
        p2(39,22) -> 39*
        p2(43,43) -> 39*
        p2(18,43) -> 39*
        p2(3,43) -> 39*
        p2(1,22) -> 39*
        p2(2,27) -> 39*
        p2(43,22) -> 39*
        p2(27,43) -> 39*
        p2(18,22) -> 39*
        p2(22,43) -> 39*
        p2(3,22) -> 39*
        p2(2,43) -> 39*
        p2(43,42) -> 44*
        p2(39,27) -> 39*
        p2(39,43) -> 39*
        p2(1,27) -> 39*
        b2(42) -> 40*
        b2(27) -> 43*
        b2(22) -> 43*
        b2(39) -> 43*
        b2(29) -> 43*
        b2(4) -> 43*
        b2(21) -> 40*
        b2(93) -> 43*
        b2(43) -> 43*
        b2(18) -> 43*
        a2(40) -> 41*
        a2(41) -> 42*
        1 -> 4*
        2 -> 4*
        3 -> 4*
      problem:
       DPs:
        
       TRS:
        p(p(b(a(x0)),x1),p(x2,x3)) -> p(p(b(x2),a(a(b(x1)))),p(x3,x0))
      Qed