YES

Problem:
 a(x,y) -> b(x,b(0(),c(y)))
 c(b(y,c(x))) -> c(c(b(a(0(),0()),y)))
 b(y,0()) -> y

Proof:
 DP Processor:
  DPs:
   a#(x,y) -> c#(y)
   a#(x,y) -> b#(0(),c(y))
   a#(x,y) -> b#(x,b(0(),c(y)))
   c#(b(y,c(x))) -> a#(0(),0())
   c#(b(y,c(x))) -> b#(a(0(),0()),y)
   c#(b(y,c(x))) -> c#(b(a(0(),0()),y))
   c#(b(y,c(x))) -> c#(c(b(a(0(),0()),y)))
  TRS:
   a(x,y) -> b(x,b(0(),c(y)))
   c(b(y,c(x))) -> c(c(b(a(0(),0()),y)))
   b(y,0()) -> y
  EDG Processor:
   DPs:
    a#(x,y) -> c#(y)
    a#(x,y) -> b#(0(),c(y))
    a#(x,y) -> b#(x,b(0(),c(y)))
    c#(b(y,c(x))) -> a#(0(),0())
    c#(b(y,c(x))) -> b#(a(0(),0()),y)
    c#(b(y,c(x))) -> c#(b(a(0(),0()),y))
    c#(b(y,c(x))) -> c#(c(b(a(0(),0()),y)))
   TRS:
    a(x,y) -> b(x,b(0(),c(y)))
    c(b(y,c(x))) -> c(c(b(a(0(),0()),y)))
    b(y,0()) -> y
   graph:
    c#(b(y,c(x))) -> c#(b(a(0(),0()),y)) ->
    c#(b(y,c(x))) -> a#(0(),0())
    c#(b(y,c(x))) -> c#(b(a(0(),0()),y)) ->
    c#(b(y,c(x))) -> b#(a(0(),0()),y)
    c#(b(y,c(x))) -> c#(b(a(0(),0()),y)) ->
    c#(b(y,c(x))) -> c#(b(a(0(),0()),y))
    c#(b(y,c(x))) -> c#(b(a(0(),0()),y)) ->
    c#(b(y,c(x))) -> c#(c(b(a(0(),0()),y)))
    c#(b(y,c(x))) -> c#(c(b(a(0(),0()),y))) ->
    c#(b(y,c(x))) -> a#(0(),0())
    c#(b(y,c(x))) -> c#(c(b(a(0(),0()),y))) ->
    c#(b(y,c(x))) -> b#(a(0(),0()),y)
    c#(b(y,c(x))) -> c#(c(b(a(0(),0()),y))) ->
    c#(b(y,c(x))) -> c#(b(a(0(),0()),y))
    c#(b(y,c(x))) -> c#(c(b(a(0(),0()),y))) ->
    c#(b(y,c(x))) -> c#(c(b(a(0(),0()),y)))
    c#(b(y,c(x))) -> a#(0(),0()) -> a#(x,y) -> c#(y)
    c#(b(y,c(x))) -> a#(0(),0()) -> a#(x,y) -> b#(0(),c(y))
    c#(b(y,c(x))) -> a#(0(),0()) -> a#(x,y) -> b#(x,b(0(),c(y)))
    a#(x,y) -> c#(y) -> c#(b(y,c(x))) -> a#(0(),0())
    a#(x,y) -> c#(y) -> c#(b(y,c(x))) -> b#(a(0(),0()),y)
    a#(x,y) -> c#(y) -> c#(b(y,c(x))) -> c#(b(a(0(),0()),y))
    a#(x,y) -> c#(y) -> c#(b(y,c(x))) -> c#(c(b(a(0(),0()),y)))
   SCC Processor:
    #sccs: 1
    #rules: 4
    #arcs: 15/49
    DPs:
     c#(b(y,c(x))) -> c#(b(a(0(),0()),y))
     c#(b(y,c(x))) -> c#(c(b(a(0(),0()),y)))
     c#(b(y,c(x))) -> a#(0(),0())
     a#(x,y) -> c#(y)
    TRS:
     a(x,y) -> b(x,b(0(),c(y)))
     c(b(y,c(x))) -> c(c(b(a(0(),0()),y)))
     b(y,0()) -> y
    Matrix Interpretation Processor:
     dimension: 1
     interpretation:
      [c#](x0) = x0,
      
      [a#](x0, x1) = x1 + 1,
      
      [b](x0, x1) = x0 + x1,
      
      [c](x0) = 1,
      
      [0] = 0,
      
      [a](x0, x1) = x0 + 1
     orientation:
      c#(b(y,c(x))) = y + 1 >= y + 1 = c#(b(a(0(),0()),y))
      
      c#(b(y,c(x))) = y + 1 >= 1 = c#(c(b(a(0(),0()),y)))
      
      c#(b(y,c(x))) = y + 1 >= 1 = a#(0(),0())
      
      a#(x,y) = y + 1 >= y = c#(y)
      
      a(x,y) = x + 1 >= x + 1 = b(x,b(0(),c(y)))
      
      c(b(y,c(x))) = 1 >= 1 = c(c(b(a(0(),0()),y)))
      
      b(y,0()) = y >= y = y
     problem:
      DPs:
       c#(b(y,c(x))) -> c#(b(a(0(),0()),y))
       c#(b(y,c(x))) -> c#(c(b(a(0(),0()),y)))
       c#(b(y,c(x))) -> a#(0(),0())
      TRS:
       a(x,y) -> b(x,b(0(),c(y)))
       c(b(y,c(x))) -> c(c(b(a(0(),0()),y)))
       b(y,0()) -> y
     Matrix Interpretation Processor:
      dimension: 1
      interpretation:
       [c#](x0) = 1,
       
       [a#](x0, x1) = 0,
       
       [b](x0, x1) = x0 + x1,
       
       [c](x0) = 0,
       
       [0] = 1,
       
       [a](x0, x1) = x0 + 1
      orientation:
       c#(b(y,c(x))) = 1 >= 1 = c#(b(a(0(),0()),y))
       
       c#(b(y,c(x))) = 1 >= 1 = c#(c(b(a(0(),0()),y)))
       
       c#(b(y,c(x))) = 1 >= 0 = a#(0(),0())
       
       a(x,y) = x + 1 >= x + 1 = b(x,b(0(),c(y)))
       
       c(b(y,c(x))) = 0 >= 0 = c(c(b(a(0(),0()),y)))
       
       b(y,0()) = y + 1 >= y = y
      problem:
       DPs:
        c#(b(y,c(x))) -> c#(b(a(0(),0()),y))
        c#(b(y,c(x))) -> c#(c(b(a(0(),0()),y)))
       TRS:
        a(x,y) -> b(x,b(0(),c(y)))
        c(b(y,c(x))) -> c(c(b(a(0(),0()),y)))
        b(y,0()) -> y
      Bounds Processor:
       bound: 1
       enrichment: match-dp
       automaton:
        final states: {16}
        transitions:
         a0(12,14) -> 11*
         a0(13,11) -> 11*
         a0(13,13) -> 11*
         a0(14,10) -> 11*
         a0(14,12) -> 11*
         a0(14,14) -> 11*
         a0(10,11) -> 11*
         a0(10,13) -> 11*
         a0(11,10) -> 11*
         a0(11,12) -> 11*
         a0(11,14) -> 11*
         a0(12,11) -> 11*
         a0(12,13) -> 11*
         a0(13,10) -> 11*
         a0(13,12) -> 11*
         a0(13,14) -> 11*
         a0(14,11) -> 11*
         a0(14,13) -> 11*
         a0(10,10) -> 17,11
         a0(10,12) -> 11*
         a0(10,14) -> 11*
         a0(11,11) -> 11*
         a0(11,13) -> 11*
         a0(12,10) -> 11*
         a0(12,12) -> 11*
         00() -> 10*
         c{#,1}(26) -> 14,15
         b1(23,29) -> 24*
         b1(24,10) -> 25*
         b1(24,12) -> 25*
         b1(24,14) -> 25*
         b1(24,24) -> 31*
         b1(23,28) -> 29*
         b1(24,11) -> 25*
         b1(24,13) -> 25*
         a1(23,23) -> 24*
         01() -> 23*
         c1(25) -> 26*
         c1(31) -> 25*
         c1(23) -> 28*
         c{#,0}(10) -> 14*
         c{#,0}(12) -> 14*
         c{#,0}(19) -> 16*
         c{#,0}(14) -> 14*
         c{#,0}(11) -> 14*
         c{#,0}(13) -> 14*
         b0(12,14) -> 13*
         b0(13,11) -> 13*
         b0(13,13) -> 11,13
         b0(14,10) -> 13*
         b0(14,12) -> 13*
         b0(14,14) -> 13*
         b0(10,11) -> 13*
         b0(10,13) -> 11,17,13
         b0(11,10) -> 13*
         b0(11,12) -> 13*
         b0(11,14) -> 13*
         b0(12,11) -> 13*
         b0(12,13) -> 11,13
         b0(17,15) -> 18*
         b0(13,10) -> 13*
         b0(13,12) -> 13*
         b0(13,14) -> 13*
         b0(14,11) -> 13*
         b0(14,13) -> 11,13
         b0(10,10) -> 13*
         b0(10,12) -> 13*
         b0(10,14) -> 13*
         b0(11,11) -> 13*
         b0(11,13) -> 11,13
         b0(11,17) -> 30*
         b0(12,10) -> 13*
         b0(12,12) -> 13*
         c0(30) -> 18*
         c0(10) -> 12*
         c0(12) -> 19,12
         c0(14) -> 12*
         c0(11) -> 12*
         c0(18) -> 19*
         c0(13) -> 12*
         10 -> 11,17,13,15
         11 -> 30,13,15
         12 -> 11,13,15
         13 -> 11,15
         14 -> 11,13,15
         17 -> 18*
         24 -> 25*
       problem:
        DPs:
         c#(b(y,c(x))) -> c#(b(a(0(),0()),y))
        TRS:
         a(x,y) -> b(x,b(0(),c(y)))
         c(b(y,c(x))) -> c(c(b(a(0(),0()),y)))
         b(y,0()) -> y
       Bounds Processor:
        bound: 1
        enrichment: match-dp
        automaton:
         final states: {6}
         transitions:
          a0(3,1) -> 2*
          a0(3,3) -> 2*
          a0(4,2) -> 2*
          a0(4,4) -> 2*
          a0(1,2) -> 2*
          a0(1,4) -> 2*
          a0(2,1) -> 2*
          a0(2,3) -> 2*
          a0(3,2) -> 2*
          a0(3,4) -> 2*
          a0(4,1) -> 2*
          a0(4,3) -> 2*
          a0(1,1) -> 7,2
          a0(1,3) -> 2*
          a0(2,2) -> 2*
          a0(2,4) -> 2*
          00() -> 1*
          c{#,1}(11) -> 6*
          b1(9,16) -> 10*
          b1(10,1) -> 11*
          b1(10,7) -> 11*
          b1(9,15) -> 16*
          a1(9,9) -> 10*
          01() -> 9*
          c1(9) -> 15*
          c{#,0}(8) -> 6*
          b0(3,1) -> 4*
          b0(3,3) -> 4*
          b0(4,2) -> 4*
          b0(4,4) -> 2,4
          b0(1,2) -> 4*
          b0(1,4) -> 2,7,4
          b0(2,1) -> 4*
          b0(2,3) -> 4*
          b0(7,5) -> 8*
          b0(3,2) -> 4*
          b0(3,4) -> 2,4
          b0(4,1) -> 4*
          b0(4,3) -> 4*
          b0(1,1) -> 4*
          b0(1,3) -> 4*
          b0(2,2) -> 4*
          b0(2,4) -> 2,4
          c0(2) -> 3*
          c0(4) -> 3*
          c0(1) -> 3*
          c0(3) -> 3*
          1 -> 2,7,4,5
          2 -> 4,5
          3 -> 2,4,5
          4 -> 2,5
          7 -> 8*
          10 -> 11*
        problem:
         DPs:
          
         TRS:
          a(x,y) -> b(x,b(0(),c(y)))
          c(b(y,c(x))) -> c(c(b(a(0(),0()),y)))
          b(y,0()) -> y
        Qed