YES

Problem:
 p(p(b(a(x0)),x1),p(x2,x3)) -> p(p(b(x2),a(a(b(x1)))),p(x3,x0))

Proof:
 DP Processor:
  DPs:
   p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0)
   p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(b(x2),a(a(b(x1))))
   p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
  TRS:
   p(p(b(a(x0)),x1),p(x2,x3)) -> p(p(b(x2),a(a(b(x1)))),p(x3,x0))
  EDG Processor:
   DPs:
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0)
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(b(x2),a(a(b(x1))))
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
   TRS:
    p(p(b(a(x0)),x1),p(x2,x3)) -> p(p(b(x2),a(a(b(x1)))),p(x3,x0))
   graph:
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0)) ->
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0)
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0)) ->
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(b(x2),a(a(b(x1))))
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0)) ->
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0) ->
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0)
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0) ->
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(b(x2),a(a(b(x1))))
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0) ->
    p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
   SCC Processor:
    #sccs: 1
    #rules: 2
    #arcs: 6/9
    DPs:
     p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
     p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(x3,x0)
    TRS:
     p(p(b(a(x0)),x1),p(x2,x3)) -> p(p(b(x2),a(a(b(x1)))),p(x3,x0))
    Matrix Interpretation Processor:
     dimension: 1
     interpretation:
      [p#](x0, x1) = x0 + x1,
      
      [p](x0, x1) = x0 + x1 + 1,
      
      [b](x0) = x0,
      
      [a](x0) = x0
     orientation:
      p#(p(b(a(x0)),x1),p(x2,x3)) = x0 + x1 + x2 + x3 + 2 >= x0 + x1 + x2 + x3 + 2 = p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
      
      p#(p(b(a(x0)),x1),p(x2,x3)) = x0 + x1 + x2 + x3 + 2 >= x0 + x3 = p#(x3,x0)
      
      p(p(b(a(x0)),x1),p(x2,x3)) = x0 + x1 + x2 + x3 + 3 >= x0 + x1 + x2 + x3 + 3 = p(p(b(x2),a(a(b(x1)))),p(x3,x0))
     problem:
      DPs:
       p#(p(b(a(x0)),x1),p(x2,x3)) -> p#(p(b(x2),a(a(b(x1)))),p(x3,x0))
      TRS:
       p(p(b(a(x0)),x1),p(x2,x3)) -> p(p(b(x2),a(a(b(x1)))),p(x3,x0))
     Bounds Processor:
      bound: 1
      enrichment: match-dp
      automaton:
       final states: {1}
       transitions:
        f40() -> 2*
        p{#,0}(8,3) -> 1*
        p{#,0}(26,3) -> 1*
        p0(7,14) -> 8*
        p0(8,3) -> 3*
        p0(13,13) -> 21*
        p0(8,21) -> 3*
        p0(4,2) -> 3*
        p0(7,44) -> 26*
        p0(4,14) -> 8*
        p0(25,13) -> 3*
        p0(21,2) -> 3*
        p0(2,5) -> 3*
        p0(12,13) -> 3*
        p0(7,13) -> 3*
        p0(13,2) -> 21*
        p0(3,2) -> 3*
        p0(4,13) -> 3*
        p0(25,2) -> 3*
        p0(5,2) -> 3*
        p0(26,3) -> 3*
        p0(26,21) -> 3*
        p0(12,2) -> 3*
        p0(7,2) -> 3*
        p0(2,2) -> 3*
        p0(7,6) -> 8*
        p0(12,12) -> 3*
        b0(2) -> 7,4
        b0(24) -> 42*
        b0(14) -> 4*
        b0(21) -> 7*
        b0(6) -> 12*
        b0(13) -> 7*
        b0(8) -> 7*
        a0(25) -> 13*
        a0(5) -> 6*
        a0(42) -> 43*
        a0(12) -> 13*
        a0(7) -> 13*
        a0(4) -> 5*
        a0(43) -> 44*
        a0(13) -> 14*
        p{#,1}(26,21) -> 1*
        p1(7,12) -> 21*
        p1(2,12) -> 21*
        p1(13,7) -> 21*
        p1(3,7) -> 21*
        p1(13,13) -> 21*
        p1(3,13) -> 21*
        p1(13,25) -> 21*
        p1(4,4) -> 21*
        p1(3,25) -> 21*
        p1(4,12) -> 21*
        p1(25,7) -> 21*
        p1(5,7) -> 21*
        p1(5,13) -> 21*
        p1(21,4) -> 21*
        p1(25,25) -> 21*
        p1(5,25) -> 21*
        p1(21,12) -> 21*
        p1(12,7) -> 21*
        p1(7,7) -> 21*
        p1(2,7) -> 21*
        p1(12,13) -> 21*
        p1(2,13) -> 21*
        p1(13,4) -> 21*
        p1(12,25) -> 21*
        p1(3,4) -> 21*
        p1(7,25) -> 21*
        p1(2,25) -> 21*
        p1(13,12) -> 21*
        p1(3,12) -> 21*
        p1(4,7) -> 21*
        p1(25,4) -> 21*
        p1(5,4) -> 21*
        p1(4,25) -> 21*
        p1(25,12) -> 21*
        p1(5,12) -> 21*
        p1(25,24) -> 26*
        p1(21,7) -> 21*
        p1(21,13) -> 21*
        p1(21,25) -> 21*
        p1(12,4) -> 21*
        p1(7,4) -> 21*
        p1(2,4) -> 21*
        p1(12,12) -> 21*
        b1(25) -> 25*
        b1(5) -> 25*
        b1(12) -> 25*
        b1(7) -> 25*
        b1(2) -> 25*
        b1(44) -> 22*
        b1(24) -> 22*
        b1(14) -> 22*
        b1(4) -> 25*
        b1(26) -> 25*
        b1(21) -> 25*
        b1(6) -> 22*
        b1(13) -> 25*
        b1(8) -> 25*
        b1(3) -> 25*
        a1(22) -> 23*
        a1(23) -> 24*
      problem:
       DPs:
        
       TRS:
        p(p(b(a(x0)),x1),p(x2,x3)) -> p(p(b(x2),a(a(b(x1)))),p(x3,x0))
      Qed