YES(?,O(n^1)) Problem: b(c(b(c(a(a(x1)))))) -> a(a(a(b(c(b(c(b(c(x1))))))))) Proof: Bounds Processor: bound: 6 enrichment: match automaton: final states: {4} transitions: b3(182) -> 183* b3(122) -> 123* b3(214) -> 215* b3(184) -> 185* b3(124) -> 125* b3(216) -> 217* b3(136) -> 137* b3(218) -> 219* b3(138) -> 139* b3(180) -> 181* b3(140) -> 141* b3(120) -> 121* c3(257) -> 258* c3(217) -> 218* c3(551) -> 552* c3(137) -> 138* c3(299) -> 300* c3(461) -> 462* c3(179) -> 180* c3(139) -> 140* c3(119) -> 120* c3(483) -> 484* c3(271) -> 272* c3(181) -> 182* c3(161) -> 162* c3(131) -> 132* c3(121) -> 122* c3(505) -> 506* c3(243) -> 244* c3(213) -> 214* c3(183) -> 184* c3(123) -> 124* c3(215) -> 216* c3(165) -> 166* c3(559) -> 560* c3(135) -> 136* a4(349) -> 350* a4(339) -> 340* a4(319) -> 320* a4(239) -> 240* a4(241) -> 242* a4(348) -> 349* a4(338) -> 339* a4(318) -> 319* a4(240) -> 241* a4(347) -> 348* a4(337) -> 338* a4(317) -> 318* b4(344) -> 345* b4(334) -> 335* b4(314) -> 315* b4(234) -> 235* b4(346) -> 347* b4(336) -> 337* b4(316) -> 317* b4(236) -> 237* b4(238) -> 239* b4(342) -> 343* b4(332) -> 333* b4(312) -> 313* b0(4) -> 4* c4(237) -> 238* c4(379) -> 380* c4(541) -> 542* c4(381) -> 382* c4(351) -> 352* c4(341) -> 342* c4(331) -> 332* c4(311) -> 312* c4(565) -> 566* c4(555) -> 556* c4(353) -> 354* c4(343) -> 344* c4(333) -> 334* c4(313) -> 314* c4(233) -> 234* c4(567) -> 568* c4(345) -> 346* c4(335) -> 336* c4(315) -> 316* c4(507) -> 508* c4(235) -> 236* c4(367) -> 368* c0(4) -> 4* a5(454) -> 455* a5(444) -> 445* a5(516) -> 517* a5(376) -> 377* a5(538) -> 539* a5(453) -> 454* a5(443) -> 444* a5(515) -> 516* a5(455) -> 456* a5(445) -> 446* a5(375) -> 376* a5(537) -> 538* a5(517) -> 518* a5(377) -> 378* a5(539) -> 540* a0(4) -> 4* b5(374) -> 375* b5(536) -> 537* b5(448) -> 449* b5(438) -> 439* b5(510) -> 511* b5(450) -> 451* b5(440) -> 441* b5(370) -> 371* b5(532) -> 533* b5(512) -> 513* b5(452) -> 453* b5(442) -> 443* b5(372) -> 373* b5(534) -> 535* b5(514) -> 515* a1(22) -> 23* a1(21) -> 22* a1(23) -> 24* c5(489) -> 490* c5(449) -> 450* c5(439) -> 440* c5(369) -> 370* c5(561) -> 562* c5(531) -> 532* c5(511) -> 512* c5(451) -> 452* c5(441) -> 442* c5(573) -> 574* c5(371) -> 372* c5(533) -> 534* c5(513) -> 514* c5(373) -> 374* c5(535) -> 536* c5(577) -> 578* c5(557) -> 558* c5(447) -> 448* c5(437) -> 438* c5(509) -> 510* b1(20) -> 21* b1(16) -> 17* b1(18) -> 19* a6(526) -> 527* a6(525) -> 526* a6(527) -> 528* c1(429) -> 430* c1(15) -> 16* c1(147) -> 148* c1(17) -> 18* c1(39) -> 40* c1(19) -> 20* c1(203) -> 204* c1(497) -> 498* c1(73) -> 74* c1(357) -> 358* c1(499) -> 500* b6(520) -> 521* b6(522) -> 523* b6(524) -> 525* a2(60) -> 61* a2(32) -> 33* a2(84) -> 85* a2(59) -> 60* a2(61) -> 62* a2(31) -> 32* a2(83) -> 84* a2(33) -> 34* a2(85) -> 86* c6(581) -> 582* c6(521) -> 522* c6(523) -> 524* c6(519) -> 520* b2(30) -> 31* b2(82) -> 83* b2(54) -> 55* b2(56) -> 57* b2(26) -> 27* b2(78) -> 79* b2(58) -> 59* b2(28) -> 29* b2(80) -> 81* c2(55) -> 56* c2(25) -> 26* c2(117) -> 118* c2(87) -> 88* c2(481) -> 482* c2(77) -> 78* c2(57) -> 58* c2(431) -> 432* c2(27) -> 28* c2(209) -> 210* c2(503) -> 504* c2(89) -> 90* c2(79) -> 80* c2(433) -> 434* c2(29) -> 30* c2(545) -> 546* c2(111) -> 112* c2(81) -> 82* c2(53) -> 54* c2(205) -> 206* c2(549) -> 550* c2(297) -> 298* a3(187) -> 188* a3(142) -> 143* a3(127) -> 128* a3(219) -> 220* a3(221) -> 222* a3(186) -> 187* a3(141) -> 142* a3(126) -> 127* a3(143) -> 144* a3(220) -> 221* a3(185) -> 186* a3(125) -> 126* 4 -> 15* 21 -> 77* 22 -> 25* 23 -> 39* 24 -> 17,19,4 31 -> 165,117 32 -> 131,53 33 -> 89,73 34 -> 79,21,17,4,15,19 40 -> 26* 59 -> 161* 60 -> 119,111 61 -> 87* 62 -> 79,17,4,15,19,21 74 -> 16* 83 -> 205* 84 -> 135* 85 -> 147* 86 -> 19,4,17,29 88 -> 78* 90 -> 78* 112 -> 26* 118 -> 26* 125 -> 311* 126 -> 381,271 127 -> 213* 128 -> 31,117,165,121,79,19,4,17,21,29,27,83,81 132 -> 120* 141 -> 299,297 142 -> 233,179 143 -> 209,203 144 -> 121,79,19,4,17,21,27 148 -> 16* 162 -> 120* 166 -> 120* 185 -> 353* 186 -> 331,257 187 -> 243* 188 -> 31,117,21,17,4,15,19,77,81,79,83,165 204 -> 16* 206 -> 26* 210 -> 78* 219 -> 431* 220 -> 351* 221 -> 357* 222 -> 123,57,19,4,17,29,139 239 -> 447* 240 -> 369* 241 -> 367* 242 -> 237,121,57,29,27,139,123,31,117,21,17,4,15,19,77,81,79,83,165,125 244 -> 214* 258 -> 120* 272 -> 120* 298 -> 26* 300 -> 120* 318 -> 461* 320 -> 217* 337 -> 549* 338 -> 509,341 339 -> 499* 340 -> 57,19,4,17,29,139,237,123 347 -> 483,481 348 -> 437,379 349 -> 433,429 350 -> 27,21,17,4,15,19,77,79,121,313 352 -> 342* 354 -> 312* 358 -> 16* 368 -> 332* 375 -> 577,555,551,545 376 -> 581,489 377 -> 565,505,503,497 378 -> 449,125,121,31,311,313,83,79,81,19,4,17,21,29,27,205,123,315 380 -> 234* 382 -> 234* 430 -> 16* 432 -> 26* 434 -> 78* 443 -> 531* 444 -> 557,541 445 -> 507* 446 -> 125,311,123,315,31,117,27,29,21,17,4,15,19,77,81,79,83,165,121,313,317 454 -> 559* 456 -> 335* 462 -> 120* 482 -> 26* 484 -> 120* 490 -> 438* 498 -> 16* 500 -> 16* 504 -> 78* 506 -> 214* 508 -> 234* 516 -> 519* 518 -> 449* 525 -> 573* 527 -> 567* 528 -> 453* 538 -> 561* 540 -> 237* 542 -> 234* 546 -> 26* 550 -> 26* 552 -> 120* 556 -> 312* 558 -> 438* 560 -> 120* 562 -> 510* 566 -> 332* 568 -> 234* 574 -> 532* 578 -> 448* 582 -> 520* problem: Qed