YES(?,O(n^1)) Problem: a(f(),a(f(),x)) -> a(x,g()) a(x,g()) -> a(f(),a(g(),a(f(),x))) Proof: Bounds Processor: bound: 4 enrichment: match automaton: final states: {4} transitions: f3() -> 18* g3() -> 16* a4(27,26) -> 28* a4(25,15) -> 26* a4(25,20) -> 26* a4(25,28) -> 14* f4() -> 25* a0(4,4) -> 4* g4() -> 27* f0() -> 4* g0() -> 4* a1(4,6) -> 14,8,4 a1(6,6) -> 4* a1(6,8) -> 6* a1(4,7) -> 8* a1(4,13) -> 8* a1(20,6) -> 4* a1(15,6) -> 4* a1(7,4) -> 8* f1() -> 4,7 g1() -> 6* a2(13,15) -> 14,8,4 a2(9,14) -> 15* a2(20,9) -> 8* a2(15,9) -> 8* a2(13,4) -> 14* a2(13,18) -> 29* a2(13,20) -> 4* a2(13,30) -> 19* a2(9,29) -> 30* a2(6,9) -> 14,8 f2() -> 13* g2() -> 9* a3(18,15) -> 19* a3(16,8) -> 20* a3(18,6) -> 19* a3(18,20) -> 14,8 a3(20,16) -> 14* a3(15,16) -> 14* a3(16,19) -> 20* problem: Qed