YES(?,O(n^1)) Problem: h(x,c(y,z)) -> h(c(s(y),x),z) h(c(s(x),c(s(0()),y)),z) -> h(y,c(s(0()),c(x,z))) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {4,3,2,1} transitions: h1(3,23) -> 1* h1(15,1) -> 1* h1(15,3) -> 1* h1(15,23) -> 1* h1(7,1) -> 1* h1(7,3) -> 1* h1(7,23) -> 1* h1(2,23) -> 1* h1(15,2) -> 1* h1(15,4) -> 1* h1(4,23) -> 1* h1(7,2) -> 1* h1(7,4) -> 1* h1(1,23) -> 1* c1(6,33) -> 7* c1(22,20) -> 23* c1(6,37) -> 7* c1(3,1) -> 20* c1(3,3) -> 20* c1(14,2) -> 15* c1(4,2) -> 20* c1(14,4) -> 7* c1(3,23) -> 20* c1(4,4) -> 20* c1(6,2) -> 7* c1(1,2) -> 20* c1(6,4) -> 7* c1(1,4) -> 20* c1(2,1) -> 20* c1(2,3) -> 20* c1(22,23) -> 23* c1(3,2) -> 20* c1(2,23) -> 20* c1(3,4) -> 20* c1(14,1) -> 7* c1(4,1) -> 20* c1(14,3) -> 7* c1(4,3) -> 20* c1(14,7) -> 7* c1(14,15) -> 7* c1(4,23) -> 20* c1(14,33) -> 7* c1(14,37) -> 7* c1(6,1) -> 7* c1(1,1) -> 20* c1(6,3) -> 7* c1(1,3) -> 20* c1(6,7) -> 7* c1(6,15) -> 7* c1(2,2) -> 20* c1(1,23) -> 20* c1(2,4) -> 20* s1(2) -> 6* s1(4) -> 14* s1(21) -> 22* s1(1) -> 14* s1(3) -> 6* 01() -> 21* h2(33,1) -> 1* h2(33,3) -> 1* h2(33,23) -> 1* h2(37,1) -> 1* h2(31,20) -> 1* h2(37,3) -> 1* h2(33,2) -> 1* h2(37,23) -> 1* h2(33,4) -> 1* h2(37,2) -> 1* h2(37,4) -> 1* h2(31,23) -> 1* h0(3,1) -> 1* h0(3,3) -> 1* h0(4,2) -> 1* h0(4,4) -> 1* h0(1,2) -> 1* h0(1,4) -> 1* h0(2,1) -> 1* h0(2,3) -> 1* h0(3,2) -> 1* h0(3,4) -> 1* h0(4,1) -> 1* h0(4,3) -> 1* h0(1,1) -> 1* h0(1,3) -> 1* h0(2,2) -> 1* h0(2,4) -> 1* c2(30,1) -> 31* c2(30,3) -> 31* c2(30,7) -> 31* c2(30,15) -> 31* c2(30,31) -> 31* c2(30,33) -> 31* c2(30,37) -> 31* c2(32,31) -> 33* c2(30,2) -> 31* c2(30,4) -> 31* c2(36,31) -> 37* c0(3,1) -> 2* c0(3,3) -> 2* c0(4,2) -> 2* c0(4,4) -> 2* c0(1,2) -> 2* c0(1,4) -> 2* c0(2,1) -> 2* c0(2,3) -> 2* c0(3,2) -> 2* c0(3,4) -> 2* c0(4,1) -> 2* c0(4,3) -> 2* c0(1,1) -> 2* c0(1,3) -> 2* c0(2,2) -> 2* c0(2,4) -> 2* s2(22) -> 30* s2(2) -> 32* s2(4) -> 36* s2(1) -> 36* s2(3) -> 32* s0(2) -> 3* s0(4) -> 3* s0(1) -> 3* s0(3) -> 3* 00() -> 4* problem: Qed