YES(?,O(n^1)) Problem: f(0()) -> s(0()) f(s(x)) -> g(s(s(x))) g(0()) -> s(0()) g(s(0())) -> s(0()) g(s(s(x))) -> f(x) Proof: Bounds Processor: bound: 5 enrichment: match automaton: final states: {5} transitions: g3(62) -> 63* s3(60) -> 61* s3(84) -> 85* s3(74) -> 75* s3(66) -> 67* s3(61) -> 62* s3(100) -> 101* f4(70) -> 71* f4(108) -> 109* f4(78) -> 79* f4(90) -> 91* 03() -> 66* s4(80) -> 81* f0(5) -> 5* 04() -> 80* 00() -> 5* s5(96) -> 97* s0(5) -> 5* 05() -> 96* g0(5) -> 5* f1(20) -> 21* f1(102) -> 103* f1(86) -> 87* f1(38) -> 39* s1(10) -> 11* s1(11) -> 12* s1(8) -> 9* 01() -> 8* g1(12) -> 13* g1(26) -> 27* f2(40) -> 41* f2(104) -> 105* f2(64) -> 65* f2(76) -> 77* f2(88) -> 89* g2(30) -> 31* s2(29) -> 30* s2(48) -> 49* s2(28) -> 29* f3(50) -> 51* 02() -> 48* 5 -> 20,10 8 -> 38,28 9 -> 27,41,13,21,5 10 -> 40* 11 -> 26* 13 -> 41,21,5 21 -> 27,5 27 -> 5* 28 -> 50* 31 -> 41,13,21,5 39 -> 5* 41 -> 13,5 48 -> 64,60 49 -> 103,87,51,31,39 51 -> 31,27,21 60 -> 70* 63 -> 13* 65 -> 27* 66 -> 78,76 67 -> 105,89,77,74,71,63,65,27,5,20,10,40 71 -> 63,13 75 -> 62* 77 -> 27* 79 -> 63,13 80 -> 90,88,86 81 -> 84,79 85 -> 62* 87 -> 5* 89 -> 27,5 91 -> 63,13 96 -> 108,104,102 97 -> 109,100,91,63 101 -> 62* 103 -> 5* 105 -> 27,5 109 -> 63,13 problem: Qed