YES(?,O(n^1)) Problem: f(a,empty()) -> g(a,empty()) f(a,cons(x,k)) -> f(cons(x,a),k) g(empty(),d) -> d g(cons(x,k),d) -> g(k,cons(x,d)) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {4,3} transitions: g1(10,5) -> 3* g1(1,10) -> 4* g1(7,5) -> 3* g1(2,5) -> 3* g1(2,7) -> 4* g1(1,5) -> 3* g1(1,7) -> 4* g1(2,10) -> 4* cons1(1,2) -> 7* cons1(1,10) -> 7* cons1(1,12) -> 5* cons1(1,14) -> 5* cons1(2,1) -> 7* cons1(2,5) -> 5* cons1(2,7) -> 7* cons1(1,1) -> 7* cons1(1,5) -> 5* cons1(1,7) -> 7* cons1(2,2) -> 10* cons1(2,10) -> 7* f1(10,1) -> 3* f1(7,1) -> 3* f1(10,2) -> 3* f1(7,2) -> 3* empty1() -> 5* g2(7,12) -> 3* g2(2,12) -> 3* g2(7,14) -> 3* g2(2,14) -> 3* g2(1,12) -> 3* g2(1,14) -> 3* g2(10,12) -> 3* g2(10,14) -> 3* f0(1,2) -> 3* f0(2,1) -> 3* f0(1,1) -> 3* f0(2,2) -> 3* cons2(2,12) -> 12* cons2(2,14) -> 12* cons2(1,12) -> 12* cons2(1,14) -> 12* cons2(2,5) -> 14* cons2(1,5) -> 12* empty0() -> 1* g0(1,2) -> 4* g0(2,1) -> 4* g0(1,1) -> 4* g0(2,2) -> 4* cons0(1,2) -> 2* cons0(2,1) -> 2* cons0(1,1) -> 2* cons0(2,2) -> 2* 1 -> 4* 2 -> 4* 5 -> 3* 7 -> 4* 10 -> 4* 12 -> 3* 14 -> 3* problem: Qed