YES(?,O(n^2))

Problem:
 f(c(X,s(Y))) -> f(c(s(X),Y))
 g(c(s(X),Y)) -> f(c(X,s(Y)))

Proof:
 Complexity Transformation Processor:
  strict:
   f(c(X,s(Y))) -> f(c(s(X),Y))
   g(c(s(X),Y)) -> f(c(X,s(Y)))
  weak:
   
  Matrix Interpretation Processor:
   dimension: 1
   max_matrix:
    1
    interpretation:
     [g](x0) = x0 + 1,
     
     [f](x0) = x0,
     
     [c](x0, x1) = x0 + x1,
     
     [s](x0) = x0
    orientation:
     f(c(X,s(Y))) = X + Y >= X + Y = f(c(s(X),Y))
     
     g(c(s(X),Y)) = X + Y + 1 >= X + Y = f(c(X,s(Y)))
    problem:
     strict:
      f(c(X,s(Y))) -> f(c(s(X),Y))
     weak:
      g(c(s(X),Y)) -> f(c(X,s(Y)))
    Matrix Interpretation Processor:
     dimension: 2
     max_matrix:
      [1 1]
      [0 1]
      interpretation:
                 [1 1]     [1]
       [g](x0) = [0 0]x0 + [0],
       
                 [1 1]  
       [f](x0) = [0 0]x0,
       
                     [1 0]       
       [c](x0, x1) = [0 0]x0 + x1,
       
                      [0]
       [s](x0) = x0 + [1]
      orientation:
                      [1 0]    [1 1]    [1]    [1 0]    [1 1]                
       f(c(X,s(Y))) = [0 0]X + [0 0]Y + [0] >= [0 0]X + [0 0]Y = f(c(s(X),Y))
       
                      [1 0]    [1 1]    [1]    [1 0]    [1 1]    [1]               
       g(c(s(X),Y)) = [0 0]X + [0 0]Y + [0] >= [0 0]X + [0 0]Y + [0] = f(c(X,s(Y)))
      problem:
       strict:
        
       weak:
        f(c(X,s(Y))) -> f(c(s(X),Y))
        g(c(s(X),Y)) -> f(c(X,s(Y)))
      Qed