YES(?,O(n^2))

Problem:
 g(f(x),y) -> f(h(x,y))
 h(x,y) -> g(x,f(y))

Proof:
 Matrix Interpretation Processor:
  dimension: 2
  interpretation:
                 [1 2]     [1 0]     [3]
   [h](x0, x1) = [0 1]x0 + [0 0]x1 + [0],
   
                 [1 2]     [1 0]     [2]
   [g](x0, x1) = [0 1]x0 + [0 0]x1 + [0],
   
                  [0]
   [f](x0) = x0 + [2]
  orientation:
               [1 2]    [1 0]    [6]    [1 2]    [1 0]    [3]            
   g(f(x),y) = [0 1]x + [0 0]y + [2] >= [0 1]x + [0 0]y + [2] = f(h(x,y))
   
            [1 2]    [1 0]    [3]    [1 2]    [1 0]    [2]            
   h(x,y) = [0 1]x + [0 0]y + [0] >= [0 1]x + [0 0]y + [0] = g(x,f(y))
  problem:
   
  Qed