YES(?,O(n^2))

Problem:
 f(x,y) -> g(x,y)
 g(h(x),y) -> h(f(x,y))
 g(h(x),y) -> h(g(x,y))

Proof:
 Matrix Interpretation Processor:
  dimension: 2
  interpretation:
                  [0]
   [h](x0) = x0 + [2],
   
                 [1 1]     [1 0]  
   [g](x0, x1) = [0 1]x0 + [0 0]x1,
   
                 [1 1]     [1 0]     [1]
   [f](x0, x1) = [0 1]x0 + [0 0]x1 + [0]
  orientation:
            [1 1]    [1 0]    [1]    [1 1]    [1 0]          
   f(x,y) = [0 1]x + [0 0]y + [0] >= [0 1]x + [0 0]y = g(x,y)
   
               [1 1]    [1 0]    [2]    [1 1]    [1 0]    [1]            
   g(h(x),y) = [0 1]x + [0 0]y + [2] >= [0 1]x + [0 0]y + [2] = h(f(x,y))
   
               [1 1]    [1 0]    [2]    [1 1]    [1 0]    [0]            
   g(h(x),y) = [0 1]x + [0 0]y + [2] >= [0 1]x + [0 0]y + [2] = h(g(x,y))
  problem:
   
  Qed