YES(?,O(n^3)) Problem: a(b(c(x1))) -> c(b(a(x1))) C(B(A(x1))) -> A(B(C(x1))) b(a(C(x1))) -> C(a(b(x1))) c(A(B(x1))) -> B(A(c(x1))) A(c(b(x1))) -> b(c(A(x1))) B(C(a(x1))) -> a(C(B(x1))) a(A(x1)) -> x1 A(a(x1)) -> x1 b(B(x1)) -> x1 B(b(x1)) -> x1 c(C(x1)) -> x1 C(c(x1)) -> x1 Proof: Matrix Interpretation Processor: dimension: 3 interpretation: [1 1 0] [0] [C](x0) = [0 1 0]x0 + [0] [0 0 1] [2], [0] [B](x0) = x0 + [0] [2], [1 3 0] [1] [A](x0) = [0 1 0]x0 + [2] [0 0 1] [0], [0] [a](x0) = x0 + [1] [0], [1 0 1] [3] [b](x0) = [0 1 0]x0 + [0] [0 0 1] [0], [1 1 4] [0] [c](x0) = [0 1 0]x0 + [3] [0 0 1] [2] orientation: [1 1 5] [5] [1 1 5] [4] a(b(c(x1))) = [0 1 0]x1 + [4] >= [0 1 0]x1 + [4] = c(b(a(x1))) [0 0 1] [2] [0 0 1] [2] [1 4 0] [3] [1 4 0] [1] C(B(A(x1))) = [0 1 0]x1 + [2] >= [0 1 0]x1 + [2] = A(B(C(x1))) [0 0 1] [4] [0 0 1] [4] [1 1 1] [5] [1 1 1] [4] b(a(C(x1))) = [0 1 0]x1 + [1] >= [0 1 0]x1 + [1] = C(a(b(x1))) [0 0 1] [2] [0 0 1] [2] [1 4 4] [11] [1 4 4] [10] c(A(B(x1))) = [0 1 0]x1 + [5 ] >= [0 1 0]x1 + [5 ] = B(A(c(x1))) [0 0 1] [4 ] [0 0 1] [4 ] [1 4 5] [13] [1 4 5] [8] A(c(b(x1))) = [0 1 0]x1 + [5 ] >= [0 1 0]x1 + [5] = b(c(A(x1))) [0 0 1] [2 ] [0 0 1] [2] [1 1 0] [1] [1 1 0] [0] B(C(a(x1))) = [0 1 0]x1 + [1] >= [0 1 0]x1 + [1] = a(C(B(x1))) [0 0 1] [4] [0 0 1] [4] [1 3 0] [1] a(A(x1)) = [0 1 0]x1 + [3] >= x1 = x1 [0 0 1] [0] [1 3 0] [4] A(a(x1)) = [0 1 0]x1 + [3] >= x1 = x1 [0 0 1] [0] [1 0 1] [5] b(B(x1)) = [0 1 0]x1 + [0] >= x1 = x1 [0 0 1] [2] [1 0 1] [3] B(b(x1)) = [0 1 0]x1 + [0] >= x1 = x1 [0 0 1] [2] [1 2 4] [8] c(C(x1)) = [0 1 0]x1 + [3] >= x1 = x1 [0 0 1] [4] [1 2 4] [3] C(c(x1)) = [0 1 0]x1 + [3] >= x1 = x1 [0 0 1] [4] problem: Qed