YES(?,O(n^1))

Problem:
 p(0()) -> 0()
 p(s(x)) -> x
 minus(x,0()) -> x
 minus(x,s(y)) -> minus(p(x),y)

Proof:
 RT Transformation Processor:
  strict:
   p(0()) -> 0()
   p(s(x)) -> x
   minus(x,0()) -> x
   minus(x,s(y)) -> minus(p(x),y)
  weak:
   
  Matrix Interpretation Processor:
   dimension: 1
   interpretation:
    [minus](x0, x1) = x0 + x1 + 8,
    
    [s](x0) = x0 + 1,
    
    [p](x0) = x0,
    
    [0] = 0
   orientation:
    p(0()) = 0 >= 0 = 0()
    
    p(s(x)) = x + 1 >= x = x
    
    minus(x,0()) = x + 8 >= x = x
    
    minus(x,s(y)) = x + y + 9 >= x + y + 8 = minus(p(x),y)
   problem:
    strict:
     p(0()) -> 0()
    weak:
     p(s(x)) -> x
     minus(x,0()) -> x
     minus(x,s(y)) -> minus(p(x),y)
   Matrix Interpretation Processor:
    dimension: 1
    interpretation:
     [minus](x0, x1) = x0 + x1 + 16,
     
     [s](x0) = x0 + 1,
     
     [p](x0) = x0 + 1,
     
     [0] = 12
    orientation:
     p(0()) = 13 >= 12 = 0()
     
     p(s(x)) = x + 2 >= x = x
     
     minus(x,0()) = x + 28 >= x = x
     
     minus(x,s(y)) = x + y + 17 >= x + y + 17 = minus(p(x),y)
    problem:
     strict:
      
     weak:
      p(0()) -> 0()
      p(s(x)) -> x
      minus(x,0()) -> x
      minus(x,s(y)) -> minus(p(x),y)
    Qed