YES(?,O(n^1))

Problem:
 f(x,y) -> h(x,y)
 f(x,y) -> h(y,x)
 h(x,x) -> x

Proof:
 RT Transformation Processor:
  strict:
   f(x,y) -> h(x,y)
   f(x,y) -> h(y,x)
   h(x,x) -> x
  weak:
   
  Matrix Interpretation Processor:
   dimension: 1
   interpretation:
    [h](x0, x1) = x0 + x1,
    
    [f](x0, x1) = x0 + x1 + 1
   orientation:
    f(x,y) = x + y + 1 >= x + y = h(x,y)
    
    f(x,y) = x + y + 1 >= x + y = h(y,x)
    
    h(x,x) = 2x >= x = x
   problem:
    strict:
     h(x,x) -> x
    weak:
     f(x,y) -> h(x,y)
     f(x,y) -> h(y,x)
   Matrix Interpretation Processor:
    dimension: 1
    interpretation:
     [h](x0, x1) = x0 + x1 + 8,
     
     [f](x0, x1) = x0 + x1 + 8
    orientation:
     h(x,x) = 2x + 8 >= x = x
     
     f(x,y) = x + y + 8 >= x + y + 8 = h(x,y)
     
     f(x,y) = x + y + 8 >= x + y + 8 = h(y,x)
    problem:
     strict:
      
     weak:
      h(x,x) -> x
      f(x,y) -> h(x,y)
      f(x,y) -> h(y,x)
    Qed