YES
TRS:
 {      h(ok(X)) -> ok(h(X)),
  active(h(d())) -> mark(g(c())),
    active(g(X)) -> mark(h(X)),
     active(c()) -> mark(d()),
        g(ok(X)) -> ok(g(X)),
    proper(h(X)) -> h(proper(X)),
    proper(g(X)) -> g(proper(X)),
     proper(d()) -> ok(d()),
     proper(c()) -> ok(c()),
    top(mark(X)) -> top(proper(X)),
      top(ok(X)) -> top(active(X))}
 DP:
  Strict:
   {      h#(ok(X)) -> h#(X),
    active#(h(d())) -> g#(c()),
      active#(g(X)) -> h#(X),
          g#(ok(X)) -> g#(X),
      proper#(h(X)) -> h#(proper(X)),
      proper#(h(X)) -> proper#(X),
      proper#(g(X)) -> g#(proper(X)),
      proper#(g(X)) -> proper#(X),
      top#(mark(X)) -> proper#(X),
      top#(mark(X)) -> top#(proper(X)),
        top#(ok(X)) -> active#(X),
        top#(ok(X)) -> top#(active(X))}
  Weak:
  {      h(ok(X)) -> ok(h(X)),
   active(h(d())) -> mark(g(c())),
     active(g(X)) -> mark(h(X)),
      active(c()) -> mark(d()),
         g(ok(X)) -> ok(g(X)),
     proper(h(X)) -> h(proper(X)),
     proper(g(X)) -> g(proper(X)),
      proper(d()) -> ok(d()),
      proper(c()) -> ok(c()),
     top(mark(X)) -> top(proper(X)),
       top(ok(X)) -> top(active(X))}
  EDG:
   {(h#(ok(X)) -> h#(X), h#(ok(X)) -> h#(X))
    (g#(ok(X)) -> g#(X), g#(ok(X)) -> g#(X))
    (proper#(g(X)) -> proper#(X), proper#(g(X)) -> proper#(X))
    (proper#(g(X)) -> proper#(X), proper#(g(X)) -> g#(proper(X)))
    (proper#(g(X)) -> proper#(X), proper#(h(X)) -> proper#(X))
    (proper#(g(X)) -> proper#(X), proper#(h(X)) -> h#(proper(X)))
    (top#(ok(X)) -> active#(X), active#(g(X)) -> h#(X))
    (top#(ok(X)) -> active#(X), active#(h(d())) -> g#(c()))
    (proper#(g(X)) -> g#(proper(X)), g#(ok(X)) -> g#(X))
    (top#(ok(X)) -> top#(active(X)), top#(ok(X)) -> top#(active(X)))
    (top#(ok(X)) -> top#(active(X)), top#(ok(X)) -> active#(X))
    (top#(ok(X)) -> top#(active(X)), top#(mark(X)) -> top#(proper(X)))
    (top#(ok(X)) -> top#(active(X)), top#(mark(X)) -> proper#(X))
    (top#(mark(X)) -> top#(proper(X)), top#(mark(X)) -> proper#(X))
    (top#(mark(X)) -> top#(proper(X)), top#(mark(X)) -> top#(proper(X)))
    (top#(mark(X)) -> top#(proper(X)), top#(ok(X)) -> active#(X))
    (top#(mark(X)) -> top#(proper(X)), top#(ok(X)) -> top#(active(X)))
    (proper#(h(X)) -> h#(proper(X)), h#(ok(X)) -> h#(X))
    (top#(mark(X)) -> proper#(X), proper#(h(X)) -> h#(proper(X)))
    (top#(mark(X)) -> proper#(X), proper#(h(X)) -> proper#(X))
    (top#(mark(X)) -> proper#(X), proper#(g(X)) -> g#(proper(X)))
    (top#(mark(X)) -> proper#(X), proper#(g(X)) -> proper#(X))
    (proper#(h(X)) -> proper#(X), proper#(h(X)) -> h#(proper(X)))
    (proper#(h(X)) -> proper#(X), proper#(h(X)) -> proper#(X))
    (proper#(h(X)) -> proper#(X), proper#(g(X)) -> g#(proper(X)))
    (proper#(h(X)) -> proper#(X), proper#(g(X)) -> proper#(X))
    (active#(g(X)) -> h#(X), h#(ok(X)) -> h#(X))}
   SCCS:
    Scc:
     {top#(mark(X)) -> top#(proper(X)),
        top#(ok(X)) -> top#(active(X))}
    Scc:
     {proper#(h(X)) -> proper#(X),
      proper#(g(X)) -> proper#(X)}
    Scc:
     {g#(ok(X)) -> g#(X)}
    Scc:
     {h#(ok(X)) -> h#(X)}
    SCC:
     Strict:
      {top#(mark(X)) -> top#(proper(X)),
         top#(ok(X)) -> top#(active(X))}
     Weak:
     {      h(ok(X)) -> ok(h(X)),
      active(h(d())) -> mark(g(c())),
        active(g(X)) -> mark(h(X)),
         active(c()) -> mark(d()),
            g(ok(X)) -> ok(g(X)),
        proper(h(X)) -> h(proper(X)),
        proper(g(X)) -> g(proper(X)),
         proper(d()) -> ok(d()),
         proper(c()) -> ok(c()),
        top(mark(X)) -> top(proper(X)),
          top(ok(X)) -> top(active(X))}
     BOUND:
      Bound: match(-raise)-DP-bounded by 4
      Automaton:
       {  top#_4(184) -> 185*
          top#_3(142) -> 143*
           top#_2(59) -> 60*
           top#_1(26) -> 27*
           top#_0(23) -> 24*
           top#_0(22) -> 11*
            top_0(22) -> 19*
            top_0(21) -> 19*
            top_0(20) -> 19*
            top_0(19) -> 19*
            top_0(18) -> 19*
            top_0(16) -> 19*
            top_0(15) -> 19*
            top_0(14) -> 19*
            top_0(13) -> 19*
            ok_4(192) -> 193*
            ok_4(189) -> 190*
            ok_3(176) -> 177*
            ok_3(171) -> 172*
            ok_3(164) -> 165*
            ok_2(145) -> 146*
            ok_2(134) -> 135*
            ok_2(127) -> 128*
            ok_2(109) -> 110*
             ok_2(75) -> 76*
             ok_1(69) -> 70*
             ok_1(62) -> 63*
             ok_1(48) -> 49*
             ok_1(44) -> 45*
             ok_0(22) -> 18*
             ok_0(21) -> 18*
             ok_0(20) -> 18*
             ok_0(19) -> 18*
             ok_0(18) -> 18*
             ok_0(16) -> 18*
             ok_0(15) -> 18*
             ok_0(14) -> 18*
             ok_0(13) -> 18*
        proper_4(186) -> 187*
        proper_4(183) -> 184*
        proper_3(159) -> 160*
        proper_3(149) -> 150*
        proper_3(141) -> 142*
        proper_2(122) -> 123*
        proper_2(120) -> 121*
        proper_2(118) -> 119*
        proper_2(115) -> 116*
        proper_2(113) -> 114*
        proper_2(111) -> 112*
        proper_2(105) -> 106*
        proper_2(102) -> 103*
         proper_2(96) -> 97*
         proper_2(82) -> 83*
         proper_2(58) -> 59*
         proper_1(42) -> 43*
         proper_1(40) -> 41*
         proper_1(38) -> 39*
         proper_1(36) -> 37*
         proper_1(34) -> 35*
         proper_1(32) -> 33*
         proper_1(30) -> 31*
         proper_1(28) -> 29*
         proper_1(25) -> 26*
         proper_0(22) -> 22*
         proper_0(21) -> 22*
         proper_0(20) -> 22*
         proper_0(19) -> 22*
         proper_0(18) -> 22*
         proper_0(16) -> 22*
         proper_0(15) -> 22*
         proper_0(14) -> 22*
         proper_0(13) -> 22*
                c_4() -> 189*
                c_3() -> 164*
                c_2() -> 109*
                c_1() -> 48*
                c_0() -> 21*
                d_2() -> 75*
                d_1() -> 44*
                d_0() -> 20*
             g_3(175) -> 176*
             g_3(162) -> 163*
             g_2(168) -> 169*
             g_2(157) -> 158*
             g_2(155) -> 156*
             g_2(144) -> 145*
             g_2(133) -> 134*
             g_2(124) -> 125*
             g_2(107) -> 108*
              g_1(92) -> 93*
              g_1(90) -> 91*
              g_1(73) -> 74*
              g_1(68) -> 69*
              g_1(54) -> 55*
              g_0(22) -> 16*
              g_0(21) -> 16*
              g_0(20) -> 16*
              g_0(19) -> 16*
              g_0(18) -> 16*
              g_0(16) -> 16*
              g_0(15) -> 16*
              g_0(14) -> 16*
              g_0(13) -> 16*
        active_4(194) -> 195*
        active_3(178) -> 179*
        active_3(173) -> 174*
        active_2(136) -> 137*
        active_2(129) -> 130*
         active_2(77) -> 78*
         active_1(71) -> 72*
         active_1(64) -> 65*
         active_1(50) -> 51*
         active_1(46) -> 47*
         active_0(22) -> 15*
         active_0(21) -> 15*
         active_0(20) -> 15*
         active_0(19) -> 15*
         active_0(18) -> 15*
         active_0(16) -> 15*
         active_0(15) -> 15*
         active_0(14) -> 15*
         active_0(13) -> 15*
             h_4(191) -> 192*
             h_4(187) -> 188*
             h_3(180) -> 181*
             h_3(170) -> 171*
             h_3(160) -> 161*
             h_2(166) -> 167*
             h_2(153) -> 154*
             h_2(151) -> 152*
             h_2(138) -> 139*
             h_2(131) -> 132*
             h_2(126) -> 127*
             h_2(116) -> 117*
             h_2(103) -> 104*
             h_1(100) -> 101*
              h_1(98) -> 99*
              h_1(88) -> 89*
              h_1(86) -> 87*
              h_1(84) -> 85*
              h_1(79) -> 80*
              h_1(66) -> 67*
              h_1(61) -> 62*
              h_1(52) -> 53*
              h_0(22) -> 14*
              h_0(21) -> 14*
              h_0(20) -> 14*
              h_0(19) -> 14*
              h_0(18) -> 14*
              h_0(16) -> 14*
              h_0(15) -> 14*
              h_0(14) -> 14*
              h_0(13) -> 14*
          mark_3(181) -> 182*
          mark_2(147) -> 148*
          mark_2(139) -> 140*
           mark_1(94) -> 95*
           mark_1(80) -> 81*
           mark_1(56) -> 57*
           mark_0(22) -> 13*
           mark_0(21) -> 13*
           mark_0(20) -> 13*
           mark_0(19) -> 13*
           mark_0(18) -> 13*
           mark_0(16) -> 13*
           mark_0(15) -> 13*
           mark_0(14) -> 13*
           mark_0(13) -> 13*
                  195 -> 184*
                  193 -> 188*
                  192 -> 194*
                  190 -> 187*
                  189 -> 191*
                  188 -> 184*
                  185 -> 143*
                  182 -> 179*
                  181 -> 183*
                  180 -> 186*
                  179 -> 142*
                  177 -> 163*
                  176 -> 178*
                  175 -> 180*
                  174 -> 142*
                  172 -> 161*
                  171 -> 173*
                  169 -> 145*
                  167 -> 127*
                  165 -> 160*
                  164 -> 175 | 170
                  163 -> 150*
                  161 -> 142*
                  160 -> 162*
                  158 -> 145*
                  156 -> 145*
                  154 -> 127*
                  152 -> 127*
                  150 -> 142*
                  148 -> 130*
                  147 -> 149*
                  146 -> 125*
                  145 -> 157 | 153
                  143 -> 60*
                  140 -> 137*
                  139 -> 141*
                  138 -> 159*
                  137 -> 59*
                  135 -> 125 | 108
                  134 -> 155 | 151 | 147 | 136
                  133 -> 138*
                  132 -> 127*
                  130 -> 59*
                  128 -> 117 | 104
                  127 -> 168 | 166 | 129
                  125 -> 123 | 114
                  123 -> 116*
                  121 -> 116*
                  119 -> 116*
                  117 -> 121 | 112
                  114 -> 103*
                  112 -> 103*
                  110 -> 119 | 106
                  109 -> 133 | 131
                  108 -> 97*
                  106 -> 107 | 103
                  104 -> 83*
                  103 -> 124*
                  101 -> 80*
                  100 -> 113*
                   99 -> 80*
                   98 -> 111*
                   97 -> 59*
                   95 -> 65*
                   94 -> 96*
                   93 -> 69*
                   92 -> 100*
                   91 -> 69*
                   90 -> 98*
                   89 -> 62*
                   88 -> 122*
                   87 -> 62*
                   86 -> 120*
                   85 -> 80*
                   84 -> 105*
                   83 -> 59*
                   81 -> 72*
                   80 -> 82*
                   79 -> 102*
                   78 -> 59*
                   76 -> 116 | 103 | 59
                   75 -> 144 | 126 | 77
                   74 -> 94 | 69
                   73 -> 84*
                   72 -> 26*
                   70 -> 55*
                   69 -> 92 | 88 | 71
                   68 -> 79*
                   67 -> 62*
                   66 -> 118*
                   65 -> 26*
                   63 -> 53*
                   62 -> 90 | 86 | 64
                   61 -> 115*
                   60 -> 27*
                   57 -> 51*
                   56 -> 58*
                   55 -> 43 | 33
                   53 -> 43 | 29
                   51 -> 26*
                   49 -> 41*
                   48 -> 73 | 66 | 50
                   47 -> 26*
                   45 -> 39*
                   44 -> 68 | 61 | 56 | 46
                   43 -> 26*
                   41 -> 26*
                   39 -> 26*
                   37 -> 26*
                   35 -> 26*
                   33 -> 26*
                   31 -> 26*
                   29 -> 26*
                   27 -> 24*
                   26 -> 54 | 52
                   24 -> 11*
                   22 -> 42*
                   21 -> 40*
                   20 -> 38*
                   19 -> 36*
                   18 -> 34 | 22 | 16 | 14
                   16 -> 32 | 22
                   15 -> 30 | 23
                   14 -> 28 | 22
                   13 -> 25 | 15}
      Strict:
       {top#(ok(X)) -> top#(active(X))}
      EDG:
       {(top#(ok(X)) -> top#(active(X)), top#(ok(X)) -> top#(active(X)))}
       SCCS:
        Scc:
         {top#(ok(X)) -> top#(active(X))}
        SCC:
         Strict:
          {top#(ok(X)) -> top#(active(X))}
         Weak:
         {      h(ok(X)) -> ok(h(X)),
          active(h(d())) -> mark(g(c())),
            active(g(X)) -> mark(h(X)),
             active(c()) -> mark(d()),
                g(ok(X)) -> ok(g(X)),
            proper(h(X)) -> h(proper(X)),
            proper(g(X)) -> g(proper(X)),
             proper(d()) -> ok(d()),
             proper(c()) -> ok(c()),
            top(mark(X)) -> top(proper(X)),
              top(ok(X)) -> top(active(X))}
         POLY:
          Argument Filtering:
           pi(top#) = 0, pi(top) = [], pi(ok) = [0], pi(proper) = [], pi(c) = [], pi(d) = [], pi(g) = [], pi(active) = [], pi(h) = [], pi(mark) = []
          Usable Rules:
           {}
          Interpretation:
           [ok](x0) = x0 + 1,
           [active] = 0
          Strict:
           {}
          Weak:
           {      h(ok(X)) -> ok(h(X)),
            active(h(d())) -> mark(g(c())),
              active(g(X)) -> mark(h(X)),
               active(c()) -> mark(d()),
                  g(ok(X)) -> ok(g(X)),
              proper(h(X)) -> h(proper(X)),
              proper(g(X)) -> g(proper(X)),
               proper(d()) -> ok(d()),
               proper(c()) -> ok(c()),
              top(mark(X)) -> top(proper(X)),
                top(ok(X)) -> top(active(X))}
          Qed
    SCC:
     Strict:
      {proper#(h(X)) -> proper#(X),
       proper#(g(X)) -> proper#(X)}
     Weak:
     {      h(ok(X)) -> ok(h(X)),
      active(h(d())) -> mark(g(c())),
        active(g(X)) -> mark(h(X)),
         active(c()) -> mark(d()),
            g(ok(X)) -> ok(g(X)),
        proper(h(X)) -> h(proper(X)),
        proper(g(X)) -> g(proper(X)),
         proper(d()) -> ok(d()),
         proper(c()) -> ok(c()),
        top(mark(X)) -> top(proper(X)),
          top(ok(X)) -> top(active(X))}
     SPSC:
      Simple Projection:
       pi(proper#) = 0
      Strict:
       {proper#(g(X)) -> proper#(X)}
      EDG:
       {(proper#(g(X)) -> proper#(X), proper#(g(X)) -> proper#(X))}
       SCCS:
        Scc:
         {proper#(g(X)) -> proper#(X)}
        SCC:
         Strict:
          {proper#(g(X)) -> proper#(X)}
         Weak:
         {      h(ok(X)) -> ok(h(X)),
          active(h(d())) -> mark(g(c())),
            active(g(X)) -> mark(h(X)),
             active(c()) -> mark(d()),
                g(ok(X)) -> ok(g(X)),
            proper(h(X)) -> h(proper(X)),
            proper(g(X)) -> g(proper(X)),
             proper(d()) -> ok(d()),
             proper(c()) -> ok(c()),
            top(mark(X)) -> top(proper(X)),
              top(ok(X)) -> top(active(X))}
         SPSC:
          Simple Projection:
           pi(proper#) = 0
          Strict:
           {}
          Qed
    SCC:
     Strict:
      {g#(ok(X)) -> g#(X)}
     Weak:
     {      h(ok(X)) -> ok(h(X)),
      active(h(d())) -> mark(g(c())),
        active(g(X)) -> mark(h(X)),
         active(c()) -> mark(d()),
            g(ok(X)) -> ok(g(X)),
        proper(h(X)) -> h(proper(X)),
        proper(g(X)) -> g(proper(X)),
         proper(d()) -> ok(d()),
         proper(c()) -> ok(c()),
        top(mark(X)) -> top(proper(X)),
          top(ok(X)) -> top(active(X))}
     SPSC:
      Simple Projection:
       pi(g#) = 0
      Strict:
       {}
      Qed
    SCC:
     Strict:
      {h#(ok(X)) -> h#(X)}
     Weak:
     {      h(ok(X)) -> ok(h(X)),
      active(h(d())) -> mark(g(c())),
        active(g(X)) -> mark(h(X)),
         active(c()) -> mark(d()),
            g(ok(X)) -> ok(g(X)),
        proper(h(X)) -> h(proper(X)),
        proper(g(X)) -> g(proper(X)),
         proper(d()) -> ok(d()),
         proper(c()) -> ok(c()),
        top(mark(X)) -> top(proper(X)),
          top(ok(X)) -> top(active(X))}
     SPSC:
      Simple Projection:
       pi(h#) = 0
      Strict:
       {}
      Qed