YES Time: 0.002177 TRS: { sort nil() -> nil(), sort cons(x, y) -> insert(x, sort y), insert(x, nil()) -> cons(x, nil()), insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v), choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)), choose(x, cons(v, w), 0(), s z) -> cons(v, insert(x, w)), choose(x, cons(v, w), s y, s z) -> choose(x, cons(v, w), y, z)} DP: DP: { sort# cons(x, y) -> sort# y, sort# cons(x, y) -> insert#(x, sort y), insert#(x, cons(v, w)) -> choose#(x, cons(v, w), x, v), choose#(x, cons(v, w), 0(), s z) -> insert#(x, w), choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z)} TRS: { sort nil() -> nil(), sort cons(x, y) -> insert(x, sort y), insert(x, nil()) -> cons(x, nil()), insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v), choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)), choose(x, cons(v, w), 0(), s z) -> cons(v, insert(x, w)), choose(x, cons(v, w), s y, s z) -> choose(x, cons(v, w), y, z)} EDG: {(sort# cons(x, y) -> insert#(x, sort y), insert#(x, cons(v, w)) -> choose#(x, cons(v, w), x, v)) (choose#(x, cons(v, w), 0(), s z) -> insert#(x, w), insert#(x, cons(v, w)) -> choose#(x, cons(v, w), x, v)) (insert#(x, cons(v, w)) -> choose#(x, cons(v, w), x, v), choose#(x, cons(v, w), 0(), s z) -> insert#(x, w)) (insert#(x, cons(v, w)) -> choose#(x, cons(v, w), x, v), choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z)) (choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z), choose#(x, cons(v, w), 0(), s z) -> insert#(x, w)) (choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z), choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z)) (sort# cons(x, y) -> sort# y, sort# cons(x, y) -> sort# y) (sort# cons(x, y) -> sort# y, sort# cons(x, y) -> insert#(x, sort y))} SCCS (2): Scc: { insert#(x, cons(v, w)) -> choose#(x, cons(v, w), x, v), choose#(x, cons(v, w), 0(), s z) -> insert#(x, w), choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z)} Scc: {sort# cons(x, y) -> sort# y} SCC (3): Strict: { insert#(x, cons(v, w)) -> choose#(x, cons(v, w), x, v), choose#(x, cons(v, w), 0(), s z) -> insert#(x, w), choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z)} Weak: { sort nil() -> nil(), sort cons(x, y) -> insert(x, sort y), insert(x, nil()) -> cons(x, nil()), insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v), choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)), choose(x, cons(v, w), 0(), s z) -> cons(v, insert(x, w)), choose(x, cons(v, w), s y, s z) -> choose(x, cons(v, w), y, z)} SPSC: Simple Projection: pi(choose#) = 1, pi(insert#) = 1 Strict: { insert#(x, cons(v, w)) -> choose#(x, cons(v, w), x, v), choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z)} EDG: {(insert#(x, cons(v, w)) -> choose#(x, cons(v, w), x, v), choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z)) (choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z), choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z))} SCCS (1): Scc: {choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z)} SCC (1): Strict: {choose#(x, cons(v, w), s y, s z) -> choose#(x, cons(v, w), y, z)} Weak: { sort nil() -> nil(), sort cons(x, y) -> insert(x, sort y), insert(x, nil()) -> cons(x, nil()), insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v), choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)), choose(x, cons(v, w), 0(), s z) -> cons(v, insert(x, w)), choose(x, cons(v, w), s y, s z) -> choose(x, cons(v, w), y, z)} SPSC: Simple Projection: pi(choose#) = 3 Strict: {} Qed SCC (1): Strict: {sort# cons(x, y) -> sort# y} Weak: { sort nil() -> nil(), sort cons(x, y) -> insert(x, sort y), insert(x, nil()) -> cons(x, nil()), insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v), choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)), choose(x, cons(v, w), 0(), s z) -> cons(v, insert(x, w)), choose(x, cons(v, w), s y, s z) -> choose(x, cons(v, w), y, z)} SPSC: Simple Projection: pi(sort#) = 0 Strict: {} Qed