
Beyond Dependency Graphs∗

Martin Korp and Aart Middeldorp
Institute of Computer Science

University of Innsbruck, Austria

Abstract

The dependency pair framework is a powerful technique for proving termination of rewrite sys-
tems. One of the most frequently used methods within the dependency pair framework is the de-
pendency graph processor. In this note we improve this processor by incorporating right-hand sides
of forward closures. In combination with tree automata completion we obtain an efficient proces-
sor which can be used instead of the dependency graph approximations that are in common use in
termination provers.

1 Introduction

Proving termination of term rewrite systems is a very active research area. Several tools exist that per-
form this task automatically. The most powerful ones are based on the dependency pair framework. This
framework combines a great variety of termination techniques in a modular way by means of dependency
pair processors. In this note we are concerned with the dependency graph processor. It is one of the most
important processors as it enables the decomposition of termination problems into smaller subproblems.
The processor requires the computation of an over-approximation of the dependency graph. In the lit-
erature several such approximations are proposed [1, 8, 12, 13]. In this note we return to tree automata
techniques. We show that tree automata completion is much more effective for approximating depen-
dency graphs than the method based on approximating the underlying rewrite system to ensure regularity
preservation proposed in [12]. We further show that by incorporating right-hand sides of forward clo-
sures [4], a technique that recently became popular in connection with the match-bound technique [6, 11],
we can eliminate arcs from the (real) dependency graph.

The remainder of the note is organized as follows. In Section 2 we recall some basic facts about
dependency graphs and processors. In Section 3 we employ tree automata completion to approximate
dependency graphs and in Section 4 we incorporate right-hand sides of forward closures. Experimental
data is presented in Section 5.

2 Preliminaries

Familiarity with term rewriting [2] and tree automata [3] is assumed. Knowledge of the dependency pair
framework [7, 14] and the match-bound technique [6, 11] will be helpful. Below we recall important
definitions concerning the former needed in the remainder of the note. Throughout this note we assume
that TRSs are finite.

Let R be a term rewrite system (TRS for short). The set of dependency pairs of R is denoted
by DP(R). A DP problem is a triple (P,R,G) where P and R are two TRSs and G ⊆ P ×P is a
directed graph. A DP problem (P,R,G) is called finite if there are no infinite rewrite sequences of
the form s1

ε−→α1 t1 →∗R s2
ε−→α2 t2 →∗R · · · such that all terms t1, t2, . . . are terminating with respect

to R and (αi,αi+1) ∈ G for all i > 1. Such an infinite sequence is said to be minimal. The main result
underlying the dependency pair approach states that a TRSR is terminating if and only if the DP problem
(DP(R),R,DP(R)×DP(R)) is finite. The latter is shown by applying functions that take a DP problem
as input and return a set of DP problems as output, the so-called DP processors. These processors must
have the property that a DP problem is finite whenever all DP problems returned by the processor are

∗A full version of this note will appear in the Proc. of the 22nd International Conference on Automated Deduction, 2009.

1

Beyond Dependency Graphs M. Korp and A. Middeldorp

finite, which is known as soundness. To use DP processors for establishing non-termination, they must
additionally be complete which means that if one of the DP problems returned by the processor is not
finite then the original DP problem is not finite.

Numerous DP processors have been developed. In this note we are concerned with the dependency
graph processor. It determines which dependency pairs can follow each other in infinite rewrite se-
quences.

Definition 1. The dependency graph processor maps a DP problem (P,R,G) to the set {(P,R,G ∩
DG(P,R))}. Here DG(P,R) is the dependency graph of P and R, which has the rules in P as nodes
and there is an arc from s→ t to u→ v if and only if there exist substitutions σ and τ such that tσ→∗R uτ .

It is well-known [1, 9, 14] that the dependency graph processor is sound and complete.

Example 2. Consider the DP problem (P,R,G) with R consisting of the rewrite rules f(g(x),y)→
g(h(x,y)) and h(g(x),y)→ f(g(a),h(x,y)), P = DP(R) consisting of

1 : F(g(x),y)→ H(x,y) 2: H(g(x),y)→ F(g(a),h(x,y)) 3: H(g(x),y)→ H(x,y)

and G = P ×P . Because H(g(x),y) is an instance of H(x,y) and F(g(a),h(x,y)) is an instance of
F(g(x),y), DG(P,R) has five arcs:

1 2 3

The dependency graph processor returns the new DP problem (P,R,DG(P,R)).

3 Tree Automata Completion

We start by recalling some basic facts and notions. Let R be a TRS over F . The set {t ∈ T (F) |
s→∗R t for some s ∈ L} of descendants of a set L ⊆ T (F) of ground terms is denoted by→∗R(L). We
say that a tree automaton A = (F ,Q,Qf ,∆) is compatible with R and L if L ⊆ L(A) and for each
rewrite rule l→ r ∈ R and state substitution σ : Var(l)→ Q such that lσ→∗∆ q it holds that rσ→∗∆ q.
For left-linearR it is known that→∗R(L)⊆ L(A) whenever A is compatible withR and L [5].

For two TRSs P and R the dependency graph DG(P,R) contains an arc from a dependency pair α
to a dependency pair β if and only if there exist substitutions σ and τ such that rhs(α)σ→∗R lhs(β)τ .
Without loss of generality we may assume that rhs(α)σ and lhs(β)τ are ground terms. Hence there
is no arc from α to β if and only if Σ(lhs(β))∩→∗R(Σ(rhs(α))) = ∅. Here Σ(t) denotes the set of
ground instances of t with respect to the signature consisting of a fresh constant # together with all
function symbols that appear in P ∪R minus the root symbols of the left- and right-hand sides of P that
do neither occur on positions below the root in P nor in R. Since →∗R(Σ(rhs(α))) is in general not
regular, we compute an over-approximation with the help of tree automata completion [5, 10] starting
from an automaton that accepts Σ(ren(rhs(α))). Here ren is the function that linearizes its argument by
replacing all occurrences of variables with fresh variables, which is needed to ensure the regularity of
Σ(ren(rhs(α))).

Definition 3. Let P andR be two TRSs, L a language, and α,β ∈P . We say that β is unreachable from
α with respect to L if there is a tree automaton A compatible with R and L∩Σ(ren(rhs(α))) such that
Σ(lhs(β))∩L(A) = ∅. The nodes of the c-dependency graph DGc(P,R) are the rewrite rules of P and
there is no arc from α to β if and only if β is unreachable from α with respect to Σ(ren(rhs(α))).

Lemma 4. For two left-linear TRSs P andR, DGc(P,R)⊇ DG(P,R).

One can extend the above lemma to arbitrary TRSs by following the approach in [10], as described
in the full version of this note.

2

Beyond Dependency Graphs M. Korp and A. Middeldorp

4 Incorporating Forward Closures

When proving the termination of a right-linear TRS R it is sufficient to restrict attention to the set of
right-hand sides of forward closures [4]. This set is defined as the closure of the right-hand sides of the
rules inR under narrowing. Formally, given a set L of terms, RFC(L,R) is the least extension of L such
that t[r]pσ ∈ RFC(L,R) whenever t ∈ RFC(L,R) and there exist a non-variable position p and a fresh
variant l→ r of a rewrite rule in R with σ a most general unifier of t|p and l. In the sequel we write
RFC(t,R) for RFC({t},R).

Definition 5. Let P and R be two TRSs. The improved dependency graph of P and R, denoted by
IDG(P,R), has the rules in P as nodes and there is an arc from s→ t to u→ v if and only if there exist
substitutions σ and τ such that tσ→∗R uτ and tσ ∈ Σ#(RFC(t,P ∪R)). Here Σ# is the operation that
replaces all variables by the fresh constant #.

Theorem 6. The improved dependency graph processor which maps a DP problem (P,R,G) to
{(P,R,G ∩ IDG(P,R))} if P ∪R is right-linear and {(P,R,G ∩DG(P,R))} otherwise is sound and
complete.

Example 7. We consider again the DP problem (P,R,G) of Example 2. Let s = H(x,y) and t =
F(g(a),h(x,y)). Because each term in Σ#(RFC(s,P ∪R)) is a ground instance of F(g(a),x) or H(a,x),
or equal to H(#,#) and each term in Σ#(RFC(t,P ∪R)) is a ground instance of F(g(a),x) or H(a,x),
IDG(P,R) contains an arc from 2 to 1. Further arcs do not exist. So IDG(P,R) looks as follows:

1 2 3

The resulting DP problem (P,R, IDG(P,R)) can be easily show to be finite.

Similar to DG(P,R), IDG(P,R) is not computable in general. We can however over-approximate
IDG(P,R) by using tree automata completion as described in Section 3.

Definition 8. Let P and R be two TRSs. The nodes of the c-improved dependency graph IDGc(P,R)
are the rewrite rules of P and there is no arc from α to β if and only if β is unreachable from α with
respect to Σ#(RFC(rhs(α),P ∪R)).

Lemma 9. Let P andR be two linear TRSs. Then IDGc(P,R)⊇ IDG(P,R).

To compute IDGc(P,R) we have to construct a tree automaton that accepts RFC(rhs(α),P ∪R).
This can be done by using tree automata completion as described in in [6, 10]. We remark that the above
lemma holds also for right-linear TRSs (see the description of the full version of this note).

5 Experimental Results

The techniques described in the preceding sections, extended to non-left-linear TRSs as described in
the full version of this note, are integrated in the termination prover TTT2. Below we report on the
experiments we performed with TTT2 on the 1331 TRSs in version 5.0 of the Termination Problem Data
Base1 that satisfy the variable condition, i.e., Var(r) ⊆ Var(l) for each rewrite rule l → r ∈ R. We
used a workstation equipped with an Intel® Pentium™ M processor running at a CPU rate of 2 GHz
and 1 GB of system memory. For all experiments we used a 60 seconds time limit. Our results are
summarized in Table 1. We list the number of successful termination attempts, the average wall-clock

1http://www.termination-portal.org

3

http://www.termination-portal.org

Beyond Dependency Graphs M. Korp and A. Middeldorp

Table 1: Dependency graph approximations

e c r ∗
successes 60 67 176 183
average time 190 390 340 279
timeouts 2 60 78 2

time needed to compute the graphs (measured in milliseconds), and the number of timeouts. Besides
the SCC processor [9, 14] we used the dependency graph processor of Definition 1 and the improved
dependency graph processor of Theorem 6 with IDGc(P,R) (DGc(P,R)) for (non-)right-linear P ∪R
(r for short). To approximate dependency graphs we used the estimation described in [8] (abbreviated by
e) and DGc(P,R) of Definition 3 (indicated by c).

The power of the new processors is apparent, although the difference with e decreases when other DP
processors are in place. An obvious disadvantage of the new processors is the large number of timeouts.
This is mostly due to the unbounded number of new states to resolve compatibility violations during tree
automata completion. Since the processors c and r seem to be quite fast when they terminate, an obvious
idea to avoid timeouts is to equip each computation of a compatible tree automaton with a small time
limit. This is shown in the column labeled ∗, which denotes the composition of e, c and r with a time
limit of 500 milliseconds each for the latter two.

References
[1] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. TCS, 236(1-2):133–178, 2000.
[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[3] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree automata

techniques and applications. Available from www.grappa.univ-lille3.fr/tata, 2002.
[4] N. Dershowitz. Termination of linear rewriting systems (preliminary version). In Proc. 8th ICALP, volume

115 of LNCS, pages 448–458, 1981.
[5] T. Genet. Decidable approximations of sets of descendants and sets of normal forms. In Proc. 9th RTA,

volume 1379 of LNCS, pages 151–165, 1998.
[6] A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify termination of left-linear

term rewriting systems. I&C, 205(4):512–534, 2007.
[7] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combining techniques for

automated termination proofs. In Proc. 11th LPAR, volume 3425 of LNAI, pages 301–331, 2004.
[8] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination of higher-order functions.

In Proc. 5th FroCoS, volume 3717 of LNAI, pages 216–231, 2005.
[9] N. Hirokawa and A. Middeldorp. Automating the dependency pair method. I&C, 199(1-2):172–199, 2005.

[10] M. Korp and A. Middeldorp. Proving termination of rewrite systems using bounds. In Proc. 18th RTA,
volume 4533 of LNCS, pages 273–287, 2007.

[11] M. Korp and A. Middeldorp. Match-bounds revisited. I&C, 2009. To appear.
[12] A. Middeldorp. Approximating dependency graphs using tree automata techniques. In Proc. 1st IJCAR,

volume 2083 of LNAI, pages 593–610, 2001.
[13] A. Middeldorp. Approximations for strategies and termination. In Proc. 2nd WRS, volume 70 of ENTCS,

pages 1–20, 2002.
[14] R. Thiemann. The DP Framework for Proving Termination of Term Rewriting. PhD thesis, RWTH Aachen,

2007. Available as technical report AIB-2007-17.

4

www.grappa.univ-lille3.fr/tata

	Introduction
	Preliminaries
	Tree Automata Completion
	Incorporating Forward Closures
	Experimental Results

