
Match-Bounds Revisited

Martin Korp Aart Middeldorp

Institute of Computer Science
University of Innsbruck

Austria

Abstract

The use of automata techniques to prove the termination of string rewrite systems
and left-linear term rewrite systems is advocated by Geser et al. in a recent sequence
of papers. We extend their work to non-left-linear rewrite systems. The key to this
extension is the introduction of so-called raise rules and the use of tree automata
that are not quite deterministic. Furthermore, to increase the applicability of the
method we show how it can be incorporated into the dependency pair framework.
To achieve this we introduce two new enrichments which take the special properties
of dependency pair problems into account.

Key words: Term rewriting, Termination, Match-bounds, Dependency pairs, Tree
automata, Automation

1 Introduction

Using automata techniques is a relatively new and elegant approach for au-
tomatically proving the termination of rewrite systems. Initially proposed for
string rewriting by Geser, Hofbauer, and Waldmann [8], the method has re-
cently been extended to left-linear term rewrite systems [11]. Variations and
improvements are discussed in [6,9,10]. The fact that the method has been
implemented in several different termination provers ([13,20,27,28]) is a clear
witness of the success of the approach.

The method is not only useful for proving uniform termination. Two key
features of the match-bound technique are that it can be employed to prove
termination of a regular subset of all terms of a term rewrite system and

Email addresses: martin.korp@uibk.ac.at (Martin Korp),
aart.middeldorp@uibk.ac.at (Aart Middeldorp).

Preprint submitted to Elsevier 19 June 2009

that it implies linear derivational complexity [11]. The former is exploited
by the “right-hand sides of forward closures” transformation which allows to
conclude uniform termination from termination of a modified rewrite system
on a restricted set of terms. The latter makes it one of the most powerful
methods that can be used to establish (linear) runtime complexity. 1

In this paper we extend the method in two directions. The first extension is
the removal of the left-linearity restriction. This turns out to be surprisingly
challenging. First of all, the theory on which the method is based does not
work without further ado for non-left-linear rewrite systems. So-called raise
rules are introduced to solve this issue. Second, the usual approach of using
deterministic tree automata for dealing with non-left-linear rewrite rules ap-
pears to be incompatible with the method. We introduce quasi-deterministic
tree automata to overcome this problem. Finally, the raise rules need special
care to enable the automata construction to terminate.

The second extension is the integration of the method into the dependency
pair framework [14,25], a powerful framework for automatically proving ter-
mination and non-termination of rewrite systems. To guarantee a successful
integration we need to modularise the method in order to be able to simplify
dependency pair problems. We achieve this by introducing two new enrich-
ments which exploit the special properties of dependency pair problems.

The remainder of the paper is organized as follows. In the next section we re-
call the basic definitions concerning the automata theory approach to proving
termination of rewrite systems and we introduce raise rules to overcome the
problem caused by non-left-linear rules. In Section 3 quasi-deterministic tree
automata are introduced and it is explained how these automata are used to
infer termination. The notion of raise-consistency is introduced in Section 4
for a proper treatment of raise rules. In Section 5 we present an alternative
notion of compatibility of tree automata and rewrite systems in order to treat
raise rules in a more efficient way. In Section 6 we recall the basic definitions
concerning the dependency pair framework and we introduce the concept of
e-DP-bounds which is based on two new enrichments that allow us to simplify
dependency pair problems. Usable rules are incorporated in Section 7 and in
Section 8 we increase the power of the match-bound method by considering
right-hand sides of forward closures. Experimental data is presented in Sec-
tion 9 and we conclude in Section 10. Some of the more technical proofs can
be found in Appendices A and B.

Many of the results presented here appeared in earlier conference papers [21,22].
New contributions include quasi-compatible tree automata in Section 5 and
the incorporation of usable rules in Section 7. Furthermore, we explain in

1 http://termcomp.uibk.ac.at

2

detail how e-DP-bounds can be extended to non-left-linear TRSs.

2 Proving Termination using Bounds

We assume familiarity with term rewriting [2] and tree automata [3]. Below
we recall some important definitions needed in the remainder of the paper.

A signature consists of function symbols equipped with fixed arities. The set
of terms constructed from a signature F and a set of variables V is denoted
by T (F ,V). The set of variables in a term t is denoted by Var(t) and the set
of function symbols of t is denoted by Fun(t). Positions are used to address
symbol occurrences in terms. Given a term t and a position p ∈ Pos(t), we
write t(p) for the symbol at position p. We use FPos(t) to denote the subset
of positions p ∈ Pos(t) such that t(p) is a function symbol. Let R be a finite or
infinite term rewrite system (TRS for short) over a finite or infinite signature
F . The restriction of R to a finite signature G ⊆ F is defined as {l → r ∈
R | l, r ∈ T (G,V)}. We call R locally terminating if every restriction of R to
a finite signature G ⊆ F is terminating.

Example 1 Consider the infinite TRS R = {fi(x) → fi+1(x) | i > 0} over
the signature F = {fi | i > 0}. It is easy to see that R is both non-terminating
and locally terminating.

Let R be a finite TRS over a finite signature F . Given a set L ⊆ T (F) of
ground terms, we say that R is terminating on L if none of the terms in L ad-
mits an infinite rewrite sequence. The set {t ∈ T (F) | s→∗R t for some s ∈ L}
of descendants of L is denoted by→∗R(L). For a set N ⊆ N of natural numbers,
the signature F ×N is abbreviated by FN . Here function symbols (f, n) with
f ∈ F and n ∈ N have the same arity as f and are written as fn. Let F be a
signature. The mappings liftc : F → FN, base : FN → F , and height : FN → N
are defined as

liftc(f) = fc base(fi) = f height(fi) = i

for all f ∈ F and c, i ∈ N. The application of φ ∈ {liftc, base} to a term
t ∈ T (F ,V) is defined as

φ(t) =

t if t is a variable

φ(f)(φ(t1), . . . , φ(tn)) if t = f(t1, . . . , tn)

These mappings are extended to sets of terms in the obvious way.

3

2.1 Bounds for Left-Linear TRSs

To prove termination of a TRS R over the signature F using the match-
bound technique [8,11], first an enriched system over the new signature FN is
constructed that simulates the original derivations. The idea behind the new
TRSs is that after a rewrite step, the minimal height of the rewritten part is
greater than the minimal height of the contracted redex. Below we introduce
three different enrichments.

Let t be a term in T (F ,V) and V ⊆ Var(t) a set of variables. A position
p ∈ FPos(t) is a roof position in t for V if V ⊆ Var(t|p). The set of all roof
positions in t for V is denoted by RPosV (t). Let l and r be two terms in
T (F ,V). The mappings top, roof, and match are defined as follows:

top(l, r) = {ε} roof(l, r) = RPosVar(r)(l) match(l, r) = FPos(l)

Let R be a TRS over the signature F and e a function that maps every rewrite
rule l → r ∈ R to a nonempty subset of FPos(l). The TRS e(R) over the
signature FN consists of all rewrite rules l′ → liftc(r) for which there exists a
rule l → r ∈ R such that base(l′) = l and c = 1 + min{height(l′(p)) | p ∈
e(l, r)}. Let c ∈ N. The restriction of e(R) to the signature F{0,...,c} is denoted
by ec(R). We write e(l→ r) for e({l→ r}).

Example 2 Consider the TRSR consisting of the rewrite rule f(g(x, h(y)))→
g(h(f(x)), y). Then top(R) contains the rewrite rules

f0(g0(x, h0(y)))→ g1(h1(f1(x)), y) f0(g0(x, h1(y)))→ g1(h1(f1(x)), y)

f0(g1(x, h0(y)))→ g1(h1(f1(x)), y) f1(g0(x, h0(y)))→ g2(h2(f2(x)), y)

f1(g1(x, h0(y)))→ g2(h2(f2(x)), y) . . .

roof(R) contains

f0(g0(x, h0(y)))→ g1(h1(f1(x)), y) f0(g0(x, h1(y)))→ g1(h1(f1(x)), y)

f0(g1(x, h0(y)))→ g1(h1(f1(x)), y) f1(g0(x, h0(y)))→ g1(h1(f1(x)), y)

f1(g1(x, h0(y)))→ g2(h2(f2(x)), y) . . .

and match(R) contains

f0(g0(x, h0(y)))→ g1(h1(f1(x)), y) f0(g0(x, h1(y)))→ g1(h1(f1(x)), y)

f0(g1(x, h0(y)))→ g1(h1(f1(x)), y) f1(g0(x, h0(y)))→ g1(h1(f1(x)), y)

f1(g1(x, h0(y)))→ g1(h1(f1(x)), y) . . .

Note that all three TRSs have infinitely many rewrite rules.

To be able to use e(R) for proving termination of R it must be guaranteed

4

that R is terminating whenever e(R) is terminating. Geser et al. [11] obtained
the following result.

Lemma 3 Let R be a TRS. The TRSs top(R) and roof(R) are locally ter-
minating. If R is right-linear then match(R) is locally terminating. 2

By definition, e(R) has an infinite signature and infinitely many rewrite rules
whenever R 6= ∅. The idea is now to check whether there exists a finite subset
of e(R) which simulates all derivations of R. Let e ∈ {top, roof,match} and
L a set of terms. A TRS R is called e-bounded for L if there exists a c ∈ N
such that the maximum height of function symbols occurring in terms in
→∗e(R)(lift0(L)) is at most c. If we want to indicate the bound c, we say that
R is e-bounded for L by c. In the following we do not mention L if we have
the set of all ground terms in mind.

Theorem 4 (Geser et al. [11]) If a left-linear TRS R is top-bounded, roof-
bounded, or both right-linear and match-bounded for a language L then R is
terminating on L. 2

In [11] it is shown that match-bounds are strictly more powerful than roof-
bounds and roof-bounds are strictly more powerful than top-bounds. So in
general one would prefer roof(R) to top(R), and one will use match(R) for
non-duplicating TRSs. The reason for introducing top(R) is that we have to
resort to it in Section 6.

We conclude this section with an example.

Example 5 Consider the TRS R of Example 2 over the signature F =
{a, f, g, h}. We show that R is not top-bounded for T (F). Consider the sub-
stitutions σ = {x 7→ g0(x, h0(a0))}, τ = {x 7→ a0} µi = {x 7→ gi(hi(x), a0)},
and νi = {x 7→ fi(a0)} for all i > 1. We have

f0(g0(x, h0(a0)))σiτ →∗top(R) g1(h1(x), a0)µ2 · · ·µiνi

for all i > 1. However, R is roof-bounded by 2 and match-bounded by 1. In
Section 3 it is explained how this can be automatically checked.

2.2 Raise-Bounds for Non-Left-Linear TRSs

The first problem that arises if one wants to extend the match-bound technique
to non-left-linear TRSs is that e-bounded TRSs need not be terminating.

Example 6 Consider the non-terminating TRS R = {f(x, x)→ f(a, x)}. The

5

TRSs match(R), roof(R), and top(R) coincide and consist of the rules

fi(x, x)→ fi+1(ai+1, x)

for all i > 0. It is not difficult to see that with these rules we can never reach
height 2 starting from a term in T ({a0, f0}). Hence R is e-bounded by 1 for
all e ∈ {top, roof,match}.

The problem is that even though every single R-step can be simulated by an
e(R)-step, this does not hold for consecutive R-steps. We have f(a, a) →R
f(a, a) →R f(a, a) but after the step f0(a0, a0) →e(R) f1(a1, a0) we are stuck
because a0 6= a1. To overcome this problem we introduce raise rules which
increase the heights of function symbols.

Definition 7 Let F be a signature. The TRS raise(F) over the signature FN
consists of all rules

fi(x1, . . . , xn)→ fi+1(x1, . . . , xn)

with f an n-ary function symbol in F , i ∈ N, and x1, . . . , xn pairwise different
variables. The restriction of raise(F) to the signature F{0,...,c} is denoted by
raisec(F). For terms s, t ∈ T (FN,V) we write s > t if t →∗raise(F) s and s ↑ t
for the least term u with u > s and u > t. The latter notion is extended to
↑S for finite nonempty sets S ⊂ T (FN,V) in the obvious way. Note that ↑S is
undefined whenever S contains two terms s and t such that base(s) 6= base(t).

The following result corresponds to Lemma 3. The right-linearity condition is
weakened to non-duplication in order to cover more non-left-linear TRSs. (A
TRS is duplicating if there exist a rewrite rule l → r and a variable x that
occurs more often in r than in l.)

Lemma 8 Let R be a TRS over a signature F . The TRSs top(R)∪ raise(F)
and roof(R) ∪ raise(F) are locally terminating. If R is non-duplicating then
match(R) ∪ raise(F) is locally terminating.

PROOF. First we consider e(R) ∪ raise(F) with e ∈ {top, roof}. From the
proof of [11, Lemma 16] we know that the rewrite rules in e(R) are oriented
from left to right by the recursive path order [5] induced by the precedence
> on FN defined as f > g if and only if height(f) < height(g). The same
holds for the rules in raise(F). Since the precedence > is well-founded on any
finite subset of FN, we conclude that e(R) ∪ raise(F) is locally terminating.
Next we show that match(R)∪ raise(F) is locally terminating. LetMFun(t)
denote the multiset of the function symbols that occur in the term t. From
the proof of [11, Lemma 17] we know that for a non-duplicating TRS R,
MFun(s) >mul MFun(t) whenever s →match(R) t. Here >mul denotes the

6

multiset extension of the precedence > on FN. If s→raise(F) t thenMFun(t) =
(MFun(s)\fi)∪{fi+1} for some function symbol f ∈ F and height i ∈ N, and
thus MFun(s) >mul MFun(t). Since >mul inherits well-foundedness from >,
we conclude that match(R) ∪ raise(F) is locally terminating. 2

Since raise(F) is non-terminating, in order to use e(R) ∪ raise(F) to infer
termination of R, we have to restrict the rules of raise(F) to those that are
really needed to simulate derivations in R. We do this by defining a new
relation

>−→e(R) in which the necessary raise steps are built in. The idea is that
s

>−→e(R) t if t can be obtained from s by doing the minimum number of raise
steps to ensure the applicability of a non-left-linear rewrite rule in e(R).

Definition 9 Let R be a TRS over a signature F . We define the relation
>−→e(R) on T (FN,V) as follows: s

>−→e(R) t if and only if there exist a rewrite
rule l → r ∈ e(R), a position p ∈ Pos(s), a context C, and terms s1, . . . , sn
such that l = C[x1, . . . , xn] with all variables displayed, s|p = C[s1, . . . , sn],
base(si) = base(sj) whenever xi = xj, and t = s[rθ]p. Here the substitution θ
is defined as follows:

θ(x) =

↑{si | xi = x} if x ∈ {x1, . . . , xn}
x otherwise

Note that
>−→e(R) =→e(R) for left-linear TRSs R. The following example illus-

trates how implicit raise steps are used in
>−→e(R) to simulate original deriva-

tions.

Example 10 Consider the TRS R consisting of the rewrite rules f(x, x) →
f(a, g(a, x)) and g(x, x)→ b over the signature F = {a, b, f, g}. With the rules

f0(x, x)→ f1(a1, g1(a1, x)) g0(x, x)→ b1 g1(x, x)→ b2

of match(R), arbitrary derivations in R can be simulated using the relation
>−→match(R). For instance,

f(f(a, a), f(a, b))→R f(f(a, g(a, a)), f(a, b))

→R f(f(a, b), f(a, b))

→R f(a, g(a, f(a, b)))

is turned into

f0(f0(a0, a0), f0(a0, b0))
>−→match(R) f0(f1(a1, g1(a1, a0)), f0(a0, b0))
>−→match(R) f0(f1(a1, b2), f0(a0, b0))
>−→match(R) f1(a1, g1(a1, f1(a1, b2)))

7

Here the following raise rules are used implicitly to enable the application of
the non-left-linear rules in match(R):

a0 → a1 b0 → b1 b1 → b2 f0(x, y)→ f1(x, y)

Definition 11 The TRS R is called e-raise-bounded for L if there exists a
c ∈ N such that the maximum height of function symbols occurring in terms
belonging to

>−→∗e(R)(lift0(L)) is at most c.

Note that e-raise-boundedness coincides with e-boundedness for left-linear
TRSs.

An immediate consequence of the next lemma is that every derivation in R
can be simulated using the rewrite relation

>−→e(R). This result is used to infer
termination from e-raise-boundedness in Theorem 13.

Lemma 12 Let R be a TRS over a signature F . If s→R t then for all terms
s′ with base(s′) = s there exists a term t′ such that base(t′) = t and s′

>−→e(R) t
′.

PROOF. Straightforward. 2

Theorem 13 Let R be a TRS over a signature F and let L ⊆ T (F). If R
is top-raise-bounded or roof-raise-bounded for L then R is terminating on L.
If R is non-duplicating and match-raise-bounded for L then R is terminating
on L.

PROOF. Assume to the contrary that there exists an infinite sequence t1 →R
t2 →R · · · with t1 ∈ L. With help of Lemma 12 this sequence is lifted to an
infinite

>−→e(R) sequence starting from lift0(t1). Since R is e-raise-bounded for
L, all terms in this latter sequence belong to T (F{0,...,c}) for some c ∈ N.
Hence the employed rules must come from ec(R) ∪ raisec(F) and therefore
ec(R)∪raisec(F) is non-terminating. This is impossible because e(R)∪raise(F)
is locally terminating according to Lemma 8. 2

We conclude this section with an example.

Example 14 Consider the TRS R over the signature F = {a, f} of Exam-
ple 6. Using the rewrite relation

>−→match(R) instead of →match(R) we obtain the
following infinite rewrite sequence:

f0(a0, a0)
>−→e(R) f1(a1, a0)

>−→e(R) f2(a2, a1)
>−→e(R) f3(a3, a2)

>−→e(R) · · ·

8

Hence R is not match(R)-raise-bounded for any L ⊆ T (F) that contains
f(a, a). Using techniques introduced in the next section, the TRS R of Exam-
ple 10 can be (automatically) shown to be match-raise-bounded by 2 and hence
terminating by Theorem 13.

3 Compatible Tree Automata

In order to prove automatically that a left-linear TRS is e-bounded for some
language L, Geser et al. [11] introduced the notion of compatible tree au-
tomata.

Definition 15 Let R be a left-linear TRS, A = (F , Q,Qf ,∆) a tree automa-
ton, and L a language. We say that A is compatible with R and L if L ⊆ L(A)
and for each rewrite rule l → r ∈ R and state substitution σ : Var(l) → Q
such that lσ →∗∆ q it holds that rσ →∗∆ q.

Example 16 Consider the TRS R over the signature F = {a, b, f} consisting
of the rewrite rules

f(x, x)→ f(a, b) f(a, a)→ a f(b, b)→ b

and the tree automaton A = (F , {1, 2}, {1, 2},∆) with the transitions

a→ 1 b→ 2 f(1, 1)→ 1 f(2, 2)→ 2

accepting the language L = T ({a, f})∪T ({b, f}). Since f(x, x)→R f(a, b) and
f(1, 1) → 1 but f(a, b) 6→∗∆ 1, A is not compatible with R and L. Adding the
transitions f(1, 2)→ 1 and f(1, 2)→ 2 to ∆ produces a tree automaton that is
compatible with R and L.

As the above definition already indicates, any compatible tree automaton A
is closed under left-linear rewriting.

Theorem 17 (Geser et al. [11]) Let R be a left-linear TRS and L a lan-
guage. Let A be a tree automaton. If A is compatible with R and L then
→∗R(L) ⊆ L(A). 2

So, as soon as we have constructed a tree automaton A that is compatible
with e(R) and lift0(L) for some left-linear TRS R, we can conclude that
→∗e(R)(lift0(L)) ⊆ L(A) and hence that R is e-bounded for L because A
consists of finitely many symbols. Since the set →∗e(R)(lift0(L)) need not be
regular, even for left-linear R and regular L [11], we cannot hope to give an
exact automaton construction. The general idea [7,11] is to look for violations
of the compatibility requirement: lσ →∗∆ q and not rσ →∗∆ q for some rewrite

9

rule l → r, state substitution σ : Var(l) → Q, and state q. Then we add new
states and transitions to the current automaton to ensure rσ →∗∆ q. There
are several ways to do this, ranging from establishing a completely new path
rσ →∗∆ q to adding as few new transitions as possible by reusing transitions
from the current automaton. After rσ →∗∆ q has been established, we look for
further violations of compatibility. This process is repeated until a compatible
automaton is obtained, which may never happen if new states are kept being
added.

To use Theorem 13 for proving termination it is necessary to construct a lan-
guage that accepts at least all terms that are reachable from lift0(L) via

>−→e(R).
As before we want to do that by using compatible tree automata. However
there is one problem. To cope with non-left-linear TRSs, non-deterministic tree
automata cannot be used [11]. The reason is that given a non-deterministic
tree automaton it is possible that terms can be only rewritten by reducing
equivalent subterms to different states. A common approach to handle non-
linearity with automata techniques is to consider deterministic tree automata
(cf. [3,23,24]). The weaker property defined below turns out to be more suit-
able for our purposes. To simplify the presentation we consider tree automata
without ε-transitions.

Definition 18 Let A = (F , Q,Qf ,∆) be a tree automaton. For a left-hand
side l ∈ lhs(∆) of a transition, we denote the set {q | l → q ∈ ∆} of
possible right-hand sides by Q(l). We call A quasi-deterministic if for ev-
ery l ∈ lhs(∆) there exists a state p ∈ Q(l) such that for all transitions
f(q1, . . . , qn) → q ∈ ∆ and i ∈ {1, . . . , n} with qi ∈ Q(l), the transition
f(q1, . . . , qi−1, p, qi+1, . . . , qn) → q belongs to ∆. Moreover, we require that
p ∈ Qf whenever Q(l) contains a final state.

Deterministic tree automata are trivially quasi-deterministic because Q(l) is a
singleton set for every left-hand side l ∈ lhs(∆). In general, Q(l) may contain
more than one state that satisfies the above property. In the following we
assume that for each left-hand side l there is a unique designated state in
Q(l), which we denote by pl. The set of all designated states is denoted by Qd

and the restriction of ∆ to transition rules l→ q that satisfy q = pl is denoted
by ∆d.

Example 19 The tree automaton A = (F , Q,Qf ,∆) with F = {a, f}, Q =
{1, 2}, Qf = {1}, and ∆ = {a → 1, a → 2, f(1, 2) → 1} is not quasi-
deterministic. This is due to the fact that for the left-hand side a neither
2 nor 1 can be used as designated state. If we take pa = 1 then we should be
able to replace state 2 in the transition f(1, 2) → 1 by 1, i.e., the transition
f(1, 1)→ 1 should belong to ∆. Similarly, if we take pa = 2 then the transition
f(2, 2)→ 1 should belong to ∆.

10

The key feature of a quasi-deterministic tree automaton (F , Q,Qf ,∆) is that
it accepts the same language as (F , Q,Qf ,∆d). To prove this, we need the
following result.

Lemma 20 Let A = (F , Q,Qf ,∆) be a quasi-deterministic tree automaton.
If t→∗∆ q then t→∗∆d

· →∆ q for all terms t ∈ T (F) and states q ∈ Q.

PROOF. We use induction on t. If t is a constant the claim holds trivially.
Let t = f(t1, . . . , tn). The sequence from t to q can be written as t →∗∆
f(q1, . . . , qn) →∆ q. The induction hypothesis yields for every i ∈ {1, . . . , n}
a left-hand side li ∈ lhs(∆) such that ti →∗∆d

li →∆ qi. Since A is quasi-
deterministic, li →∆d

pli , and qi ∈ Q(li). According to the definition of pl1
the transition f(pl1 , q2, . . . , qn) → q belongs to ∆. Repeating this argument
n − 1 times yields that the transition f(pl1 , . . . , pln) → q belongs to ∆. Thus
t→∗∆d

f(pl1 , . . . , pln)→∆ q. 2

Lemma 21 Let A = (F , Q,Qf ,∆) be a quasi-deterministic tree automaton.
The tree automaton Ad = (F , Q,Qf ,∆d) is deterministic and L(A) = L(Ad).

PROOF. From the definition it is obvious that Ad is deterministic. The
inclusion L(Ad) ⊆ L(A) is trivial. In order to show the reverse inclusion,
we prove the following claim for all terms t ∈ T (F) and states q ∈ Q:

If t→∗∆ q then t→∗∆d
pl and q ∈ Q(l) for some l ∈ lhs(∆).

We use induction on t. If t is a constant then t → q ∈ ∆. Hence t ∈ lhs(∆),
q ∈ Q(t), and t→ pt ∈ ∆d. Let t = f(t1, . . . , tn). The sequence from t to q can
be written as t →∗∆ f(q1, . . . , qn) →∆ q. From the previous lemma we know
that t →∗∆d

f(p1, . . . , pn) →∆ q. Let l = f(p1, . . . , pn). We have l ∈ lhs(∆),
q ∈ Q(l), and l→ pl ∈ ∆d. It follows that t→∗∆d

pl. This completes the proof
of the claim. Now let t ∈ L(A). So t→∗∆ qf for some qf ∈ Qf . From the claim
we obtain t →∗∆d

pl and qf ∈ Q(l) for some l ∈ lhs(∆). Since Q(l) contains a
final state, we have pl ∈ Qf by definition. Hence t ∈ L(Ad). 2

A simple procedure to turn an arbitrary tree automaton A = (F , Q,Qf ,∆)
into an equivalent quasi-deterministic one without losing any transitions of ∆
is the following:

(1) Use the subset construction to transform A into a deterministic tree
automaton A′ = (F , Q′, Q′f ,∆′).

(2) Take the union of A and A′ after identifying states {q} ∈ Q′ with q ∈ Q.

Let us illustrate this on a small example.

11

Example 22 Consider the tree automaton A of Example 19. The subset con-
struction produces A′ = (F , Q′, Q′f ,∆′) with Q′ = {{1}, {2}, {1, 2}}, Q′f =
{{1}, {1, 2}}, and ∆′ consisting of the following transitions:

a→ {1, 2} f({1}, {2})→ {1} f({1, 2}, {2})→ {1}
f({1}, {1, 2})→ {1} f({1, 2}, {1, 2})→ {1}

Combining A and A′ after identifying {1} with 1 and {2} with 2 produces the
following transitions:

a→ {1, 2} f(1, 2)→ 1 f({1, 2}, 2)→ 1

a→ 1 f(1, {1, 2})→ 1 f({1, 2}, {1, 2})→ 1

a→ 2

The final states are 1 and {1, 2}, and pa = {1, 2}.

Because we will use quasi-deterministic tree automata rather than non-deter-
ministic tree automata to construct

>−→∗e(R)(lift0(L)), we adapt the definition
of compatible tree automata to make it more suitable for our purpose.

Definition 23 Let R be a non-left-linear TRS and L a language. Let A =
(F , Q,Qf ,∆) be a quasi-deterministic tree automaton. We say that A is com-
patible with R and L if L ⊆ L(A) and for each rewrite rule l → r ∈ R and
state substitution σ : Var(l)→ Qd such that lσ →∗∆d

q it holds that rσ →∗∆ q.

The reason for requiring rσ →∗∆ q rather than rσ →∗∆d
q is that it is easier to

construct a path rσ →∗∆ q because one can reuse more transitions.

Assume that we have constructed a quasi-deterministic tree automata A that
is compatible with e(R) and lift0(L). To infer that R is e-raise-bounded for L,
it must be guaranteed that A accepts at least

>−→∗e(R)(lift0(L)). In the following
we show that compatibility of A yields →∗e(R)(lift0(L)) ⊆ L(A) for any TRS
R. However that is not enough to conclude e-raise-boundedness. We also have
to ensure that A is closed under the implicit raise steps caused by the rewrite
relation

>−→. How this can be done automatically is explained in Section 4.

Theorem 24 Let R be a TRS, L a language, and A a quasi-deterministic
tree automaton. If A is compatible with R and L then →∗R(L) ⊆ L(A).

PROOF. Let s and t be two ground terms such that s ∈ L(A) and s →R
t. We show that t ∈ L(A). The desired result then follows by induction.
There exist a rewrite rule l → r ∈ R, a position p ∈ Pos(s), and a ground
substitution σ such that s = s[lσ]p →R s[rσ]p = t. Let A = (F , Q,Qf ,∆).
Because s ∈ L(A) = L(Ad), there exist states q ∈ Q and qf ∈ Qf such that
s = s[lσ]p →∗∆d

s[q]p →∗∆d
qf . Because Ad is deterministic by Lemma 21,

12

different occurrences of xσ in lσ are reduced to the same state in the sequence
from s[lσ]p to s[q]p. Hence there exists a mapping τ : Var(l) → Qd such that
lσ →∗∆d

lτ →∗∆d
q. We have rσ →∗∆d

rτ →∗∆d
· →∆ q by the definition of

compatibility and Lemma 20. Hence t = s[rσ]p →∗∆d
· →∆ s[q]p →∗∆d

qf and
thus t ∈ L(A). 2

The reason why we prefer quasi-deterministic tree automata over deterministic
automata is the importance of preserving existing transitions when construct-
ing an automaton that satisfies the compatibility condition. This is illustrated
in the next example.

Example 25 Consider the TRS R over the signature F = {a, b, f} of Exam-
ple 16 and the initial tree automaton A = (F{0}, {1}, {1},∆) with the following
transitions:

a0 → 1 b0 → 1 f0(1, 1)→ 1

Suppose we look for a deterministic tree automaton that is compatible with the
TRS match(R) and the language lift0(T (F)). Note that L(A) = lift0(T (F)).
Since f0(a0, a0)→match(R) a1 and f0(a0, a0)→∗ 1, we add the transition a1 → 1.
Similarly, f0(b0, b0) →match(R) b1 gives rise to the transition b1 → 1. Next
we consider f0(x, x) →match(R) f1(a1, b1) with f0(1, 1) → 1. In order to ensure
f1(a1, b1)→∗ 1 we may reuse one or both of the transitions a1 → 1 and b1 → 1.
Let us consider the various alternatives.

• If we reuse both transitions then we only need to add the transition f1(1, 1)→
1 in order to obtain f1(a1, b1)→∗ 1. This however gives rise to further vio-
lations of compatibility, namely f1(a1, a1) →match(R) a2 with f1(a1, a1) →∗ 1,
f1(b1, b1) →match(R) b2 with f1(b1, b1) →∗ 1 and f1(x, x) →match(R) f2(a2, b2)
with f1(1, 1)→ 1. To solve the first two violations the transitions a2 → 1 and
b2 → 1 have to be added. Afterwards the automaton consist of the following
transitions:

a0 → 1 b0 → 1 f0(1, 1)→ 1

a1 → 1 b1 → 1 f1(1, 1)→ 1

a2 → 1 b2 → 1

It is easy to see that the new situation is similar to the one at the beginning:
We have to establish f2(a2, b2) →∗ 1 and may reuse one or both of the
transitions a2 → 1 and b2 → 1.
• Suppose we reuse a1 → 1 but not b1 → 1. That means we have to add a new

state 2 and transitions b1 → 2 and f1(1, 2) → 1 resulting in the following

13

transitions:

a0 → 1 b0 → 1 f0(1, 1)→ 1

a1 → 1 b1 → 1 b1 → 2 f1(1, 2)→ 1

Making these transitions deterministic produces an automaton that includes
b0 → 1, f0(1, 1) → 1 and b1 → {1, 2}. Because the transition b1 →
1 was removed, the second violation of compatibility that we considered,
f0(b0, b0) →match(R) b1 and f0(b0, b0) → 1, reappears. So we have to add
b1 → 1 again, but each time we make the automaton deterministic this
transition is deleted.
• The remaining options would be to choose a fresh state for a1 or for both a1

and b1. However they all give rise to the same situation.

So by using deterministic automata we will never achieve compatibility. The
problem is clearly the removal of transitions that were added in an earlier stage
to ensure compatibility and that is precisely the reason why we introduced quasi-
deterministic automata. Starting from the transitions in the last case above,
the following quasi-deterministic tree automaton is constructed:

a0 → 1 b0 → 1 f0(1, 1)→ 1

a1 → 1 | 2 | 4 b1 → 1 | 3 | 5 f1(2, 3)→ 1

f0(1, 4)→ 1 f0(1, 5)→ 1 f0(4, 1)→ 1 f0(4, 4)→ 1

f0(4, 5)→ 1 f0(5, 1)→ 1 f0(5, 4)→ 1 f0(5, 5)→ 1

f1(2, 5)→ 1 f1(4, 3)→ 1 f1(4, 5)→ 1

The path f1(a1, b1) →∗ 1 has been established by adding the new states 2 and
3 and the transitions a1 → 2, b1 → 3, and f1(2, 3) → 1. Furthermore 4
(abbreviating {1, 2}) is the designated state for a1 and 5 (abbreviating {1, 3})
is the designated state for b1. The transitions in the last three rows are added
to satisfy the condition of Definition 18. The resulting automaton is compatible
with match(R).

4 Raise-Consistent Tree Automata

A naive (and sound) approach to guarantee that the implicit raise rules in the
definition of

>−→e(R) are taken into account would be to require compatibility
with all raise rules fi(x1, . . . , xn)→ fi+1(x1, . . . , xn) for which fj with j > i+1
appears in the current set of transitions. The following example shows that
this approach may over-approximate the essential raise steps too much.

Example 26 Let us continue the previous example. We have f0(x, y)→raise(F)

f1(x, y) with f0(1, 1)→ 1. Compatibility requires the addition of the transition

14

f1(1, 1)→ 1, causing a new compatibility violation f1(x, x)→match(R) f2(a2, b2)
with f1(1, 1) → 1. After establishing the path f2(a2, b2) →∗ 1, f2 will make
its appearance and thus we have to consider f1(x, y) →raise(F) f2(x, y) with
f1(1, 1) → 1. This yields the transition f2(1, 1) → 1. Clearly, this process will
not terminate.

To avoid the behaviour in the previous example, we now outline a better way
to handle the raise rules. Let fi(q1, . . . , qn) → q be a transition that we add
to the current set ∆ of transitions, either to resolve a compatibility viola-
tion or to satisfy the quasi-determinism condition. Then, for every transition
fj(q1, . . . , qn) → p ∈ ∆ with j < i we add fi(q1, . . . , qn) → p to ∆ and for
every transition fj(q1, . . . , qn) → p ∈ ∆ with j > i we add fj(q1, . . . , qn) → q
to ∆. The automata resulting from this implicit handling of raise rules satisfy
the property defined below.

Definition 27 Let A = (FN , Q,Qf ,∆) be a tree automaton with N a finite
subset of N. We say that A is raise-consistent if for every pair of transitions
fi(q1, . . . , qn) → q and fj(q1, . . . , qn) → p in ∆ with i < j, the transition
fj(q1, . . . , qn)→ q belongs to ∆.

Let us illustrate the above definition on an example.

Example 28 The tree automaton A = (F , Q,Qf ,∆) with F = {a0, a1, f0, f2},
Q = {1, 2}, Qf = {1}, and transitions

a0 → 1 a1 → 1 | 2 f0(1, 2)→ 1 f2(1, 2)→ 2

is not raise-consistent because f0(1, 2) → 1 but not f2(1, 2) → 1. Adding the
latter transition to ∆ makes A raise-consistent.

In the remainder of the section we show that by constructing a quasi-determi-
nistic and raise-consistent tree automaton A that is compatible with e(R) and
lift0(L) it is guaranteed that A accepts

>−→∗e(R)(lift0(L)).

Lemma 29 Let A = (FN , Q,Qf ,∆) be a quasi-deterministic tree automaton.
If A is raise-consistent then for all terms s, t ∈ T (FN) and states p, q ∈ Q
with base(s) = base(t), s →∗∆ p, and t →∗∆ q there exists a left-hand side
l ∈ lhs(∆) such that s ↑ t→∗∆d

l and p, q ∈ Q(l).

PROOF. We prove the lemma by induction on s and t. If s and t are con-
stants then s ↑ t ∈ {s, t}. If t > s then s ↑ t = t and p ∈ Q(t) by the
definition of raise-consistency. If s > t then s ↑ t = s and q ∈ Q(s). So
in both cases we can take l = s ↑ t. For the induction step suppose that
s = fj(s1, . . . , sn) and t = fk(t1, . . . , tn) with s →∗∆ fj(p1, . . . , pn) →∆ p
and t →∗∆ fk(q1, . . . , qn) →∆ q. The induction hypothesis yields left-hand

15

sides l1, . . . , ln ∈ lhs(∆) such that si ↑ ti →∗∆d
li with pi, qi ∈ Q(li) for all

i ∈ {1, . . . , n}. Let m = max {j, k}. Clearly s ↑ t = fm(s1 ↑ t1, . . . , sn ↑ tn).
Let l = fm(pl1 , . . . , pln). We have li → pli ∈ ∆d for all i ∈ {1, . . . , n} by the
definition of designated state and thus s ↑ t→∗∆d

fm(l1, . . . , ln)→∗∆d
l. Because

A is quasi-deterministic, fj(pl1 , . . . , pln) → p and fk(pl1 , . . . , pln) → q belong
to ∆. It follows that l ∈ lhs(∆). Raise-consistency yields p, q ∈ Q(l). 2

Theorem 30 Let R be a TRS and L a language. Let A be a raise-consistent
and quasi-deterministic tree automaton. If A is compatible with e(R) and
lift0(L) then R is e-raise-bounded for L.

PROOF. Let F be the signature of R and let A = (FN , Q,Qf ,∆) for some
finite subset N of N. We have lift0(L) ⊆ L(A). Let s ∈ L(A) and s

>−→l→r t
with l→ r ∈ e(R). Then there is a term s′ such that s→∗raise(F) s

′ →l→r t. We
show that s′ ∈ L(A). If l is linear then s = s′ and we are done. Suppose l is non-
linear. To simplify the notation we assume that l = f(x, x). Let p the position
at which the rewrite rule l→ r is applied. We may write s = s[f(s1, s2)]p and
s′ = s[f(u, u)]p with base(s1) = base(s2) and u = s1 ↑ s2. Since s ∈ L(A),
there exist states p1, p2, q ∈ Q and qf ∈ Qf such that s →∗∆ s[f(p1, p2)]p →∆

s[q]p →∗∆ qf . In order to conclude s′ ∈ L(A) we show that f(u, u) →∗∆ q.
The previous lemma yields a left-hand side l ∈ lhs(∆) such that u→∗∆d

l and
p1, p2 ∈ Q(l). We obtain f(u, u)→∗∆d

f(l, l)→∗∆d
f(pl, pl). Quasi-determinism

yields f(pl, pl)→ q ∈ ∆ and thus f(u, u)→∗∆ q as desired. Now that s′ ∈ L(A)
is established, we obtain t ∈ L(A) from the compatibility of A and e(R), as
in the proof of Theorem 24. 2

Example 31 Since the final quasi-deterministic tree automaton in Exam-
ple 25 is raise-consistent and compatible with match(R) and lift0(T (F)), R
is match-raise-bounded by Theorem 30.

5 Quasi-Compatible Tree Automata

By using the explicit approach for handling raise rules described in the first
paragraph of Section 4 or the implicit approach using raise-consistent tree
automata, it is often the case that a transition is duplicated by increasing the
height of the function symbol of the left-hand side. As soon as this happens, the
transition with the smaller height is useless since in each further compatibility
violation the new one with the greater height can be used instead. To be
able to simplify tree automata by removing such transitions we introduce the
notion of quasi-compatible tree automata.

16

Definition 32 Let R be a TRS and L a language. Let A = (FN , Q,Qf ,∆) be
a quasi-deterministic tree automaton with N a finite subset of N. We say that
A is quasi-compatible with R and L if for all t ∈ L there is a term t′ ∈ L(A)
such that t′ > t and for each rewrite rule l → r ∈ R and state substitution
σ : Var(l)→ Qd such that lσ →∗∆d

q it holds that r′σ →∗∆ q for some r′ > r.

In the following we show that each quasi-deterministic and raise-consistent
tree automaton A that is quasi-compatible with e(R) and lift0(L) can be
transformed into a quasi-deterministic and raise-consistent tree automaton
that is compatible with e(R) and lift0(L). As an immediate consequence we
obtain that R is e-raise-bounded for L if A is quasi-compatible with e(R) and
lift0(L).

Definition 33 Let A = (FN , Q,Qf ,∆) be a tree automaton with N a finite
subset of N. We say that A is height-complete if for all fi(q1, . . . , qn)→ q ∈ ∆
we have fj(q1, . . . , qn)→ q ∈ ∆ for all 0 6 j < i.

Lemma 34 Let A = (FN , Q,Qf ,∆) be a raise-consistent and quasi-determi-
nistic tree automaton with N a finite subset of N. Let A′ = (FN ′ , Q,Qf ,∆

′)
be the smallest height-complete tree automaton such that ∆ ⊆ ∆′. Then A′ is
quasi-deterministic and raise-consistent.

PROOF. First we show that A′ is quasi-deterministic. If A′ is not quasi-
deterministic then there is an l′ ∈ lhs(∆′) such that for all states p ∈ Q∆′(l′)
there is a transition fc(q1, . . . , qn) → q ∈ ∆′ and a j ∈ {1, . . . , n} with
qj ∈ Q∆′(l′) and fc(q1, . . . , qj−1, p, qj+1, . . . , qn) → q /∈ ∆′. According to
Definition 33 there is an l ∈ lhs(∆) such that l > l′. Consider the state
pl ∈ Q∆(l) whose existence is guaranteed because A is quasi-deterministic.
As A′ is the smallest height-complete tree-automaton such that ∆ ⊆ ∆′ we
have Q∆′(l′) = Q∆(l) and thus pl ∈ Q∆′(l′). By assumption there is a transi-
tion fc(q1, . . . , qn) → q ∈ ∆′ and a j ∈ {1, . . . , n} such that qj ∈ Q∆′(l) and
fc(q1, . . . , qj−1, pl, qj+1, . . . , qn) → q /∈ ∆′. Because A′ is the smallest height-
complete extension of A, there exists a transition fc′(q1, . . . , qn) → q ∈ ∆
for some c′ > c. Since A is quasi-deterministic and qj ∈ Q∆(l) we have
fc′(q1, . . . , qj−1, pl, qj+1, . . . , qn) → q ∈ ∆ ⊆ ∆′. Height-completeness of A′
yields fc(q1, . . . , qj−1, pl, qj+1, . . . , qn) → q ∈ ∆′, providing the desired contra-
diction. Hence A′ is quasi-deterministic. Raise-consistency is an immediate
consequence of Definitions 27 and 33. 2

Theorem 35 Let R be a TRS and L a language. Let A be a raise-consistent
and quasi-deterministic tree automaton. If A is quasi-compatible with e(R)
and lift0(L) then R is e-raise-bounded for L.

17

PROOF. Let A = (FN , Q,Qf ,∆) for some finite subset N of N. Let A′ =
(FN ′ , Q,Qf ,∆

′) be the smallest height-complete tree-automaton such that
∆ ⊆ ∆′. We prove the theorem by showing that A′ is compatible with e(R)
and lift0(L). Assume to the contrary that this does not hold. Then there is a
rewrite rule l → r ∈ e(R) and a state substitution σ : Var(l)→ Qd such that
lσ →∗∆′

d
q but not rσ →∗∆′ q. By construction of A′ there exists a term l′ > l

such that l′σ →∗∆d
q. Let r′ > r such that l′ → r′ ∈ e(R). Since A is quasi-

compatible with e(R) and lift0(L) there must be a term r′′ > r′ such that
r′′σ →∗∆ q and thus also r′′σ →∗∆′ q. Let c ∈ N such that liftc(base(r)) = r
and let l1 → p1, . . . , ln → pn the transitions in ∆′ which are used in the
derivation r′′σ →∗∆′ q. From r′′ > r and the height-completeness of A′ we
infer that liftc(base(l1))→ p1, . . . , liftc(base(ln))→ pn ∈ ∆′. Hence rσ →∗∆′ q,
contradicting our assumption. To conclude the proof we remark that A′ is
quasi-deterministic and raise-consistent due to Lemma 34. Hence R is e-raise-
bounded for L according to Theorem 30. 2

The general idea for constructing a quasi-compatible tree automaton is quite
similar to the procedure described in Section 3 for constructing a compatible
tree automaton. At first we look for violations of the quasi-compatibility re-
quirement: lσ →∗∆d

q for some rewrite rule l→ r, state substitution σ : Var(l)→
Qd, state q, but not r′σ →∗∆ q for any r′ > r. After rσ →∗∆ q has been es-
tablished by adding new states and transitions to the current automaton, we
delete all transitions fi(q1, . . . , qn) → q for which there is a base-equivalent
transition fj(q1, . . . , qn) → q with j > i. This process is repeated until a
quasi-compatible tree automaton is obtained, which may never happen if new
states are kept being added.

Example 36 A quasi-deterministic and raise-consistent tree automaton that
is quasi-compatible with the TRS of Example 25 has the following transitions:

a1 → 1 | 2 | 4 b1 → 1 | 3 | 5
f0(1, 1)→ 1 f0(1, 4)→ 1 f0(1, 5)→ 1 f0(4, 1)→ 1

f0(4, 4)→ 1 f0(5, 1)→ 1 f0(5, 4)→ 1 f0(5, 5)→ 1

f1(2, 3)→ 1 f1(2, 5)→ 1 f1(4, 3)→ 1 f1(4, 5)→ 1

With respect to the quasi-deterministic, raise-consistent, and compatible tree
automaton given in Example 25, the transitions a0 → 1, b0 → 1 and f0(4, 5)→
1 are removed.

Because e-raise-boundedness coincides with e-boundedness for left-linear TRSs
it is obvious that quasi-compatible tree automata can be also used to verify
e-bounds.

18

6 Combining Dependency Pairs and Bounds

The dependency pair method [1] is a powerful approach for proving termina-
tion of TRSs. The dependency pair framework [15,25] is a modular reformula-
tion and improvement of this approach. After presenting a simplified version
of it which is sufficient for our purposes, we show how the match-bound tech-
nique can be integrated into the dependency pair framework.

LetR be a TRS over a signature F . The signature F is extended with symbols
f] for every symbol f ∈ {root(l) | l → r ∈ R}, where f] has the same arity
as f , resulting in the signature F]. If t ∈ T (F ,V) with root(t) defined then
t] denotes the term that is obtained from t by replacing its root symbol with
root(t)]. If l→ r ∈ R and t is a subterm of r with a defined root symbol that
is not a proper subterm of l then the rule l] → t] is a dependency pair of R.
The set of dependency pairs of R is denoted by DP(R).

Example 37 Consider the TRS R consisting of the two rewrite rules
f(g(x), y) → g(h(x, y)) and h(x, y) → f(x, g(y)). The dependency pairs of R
are f](g(x), y) → h](x, y) and h](x, y) → f](x, g(y)). To ease readability, we
often write F instead of f], etc.

A DP problem is a pair of TRSs (P ,R) such that symbols in {root(l), root(r) |
l→ r ∈ P} do neither occur in R nor in proper subterms of the left and right-
hand sides of rules in P . The problem is said to be finite if there is no infinite
sequence s1

ε−→P t1 →∗R s2
ε−→P t2 →∗R · · · such that all terms t1, t2, . . . are

terminating with respect toR. Such an infinite sequence is said to be minimal.
Here the ε in

ε−→P denotes that the application of the rule in P takes place at
the root position. We say that (P ,R) is finite on a language L ⊆ T (F]) if
there is no minimal rewrite sequence starting at a term s ∈ L. The main result
underlying the dependency pair approach states that a TRS R is terminating
if and only if the DP problem (DP(R),R) is finite.

In order to prove finiteness of a DP problem a number of so-called DP proces-
sors have been developed. DP processors are functions that take a DP problem
as input and return a set of DP problems as output. In order to be employed
to prove termination they need to be sound, that is, if all DP problems in a set
returned by a DP processor are finite then the initial DP problem is finite. In
addition, to ensure that a DP processor can be used to prove non-termination
it must be complete which means that if one of the DP problems returned by
the DP processor is not finite then the original DP problem is not finite.

To simplify the presentation we first consider left-linear TRSs. The extension
to non-left-linear TRSs is discussed in Section 6.2. Finally in Section 6.3 it
is explained how (quasi-deterministic and raise-consistent) tree automata can
be used to infer finiteness of DP problems.

19

6.1 DP-Bounds for Left-Linear DP Problems

The general procedure for proving finiteness of a DP problem (P ,R) tries to
remove step by step those rewrite rules in P which cannot be used infinitely
often in any minimal rewrite sequence. In each step a different DP processor
can be applied. As soon as P is empty, we can conclude that the DP problem
(P ,R) is finite.

It is easy to incorporate the match-bound technique into the DP framework
by defining a processor that checks for e-boundedness of P ∪R.

Theorem 38 The DP processor

(P ,R) 7→

∅ if P ∪R is left-linear and either top-bounded or

roof-bounded, or linear and match-bounded for T (F)

{(P ,R)} otherwise

where F is the signature of P ∪R, is sound and complete.

PROOF. Assume that P ∪ R is e-bounded for T (F). By Theorem 4 we
conclude that P ∪ R is terminating. Because P ∪ R does not admit an infi-
nite rewrite sequence we know that (P ,R) does not admit a minimal rewrite
sequence. Hence (P ,R) is finite. 2

This DP processor either succeeds by proving that the combined TRS P ∪
R is e-bounded or, when the e-boundedness of P ∪ R cannot be proved, it
returns the initial DP problem. Since the construction of a compatible tree
automaton does not terminate for TRSs that are not e-bounded, the latter
situation typically does not happen. Hence the DP processor of Theorem 38 is
applicable only at the leaves of the DP search tree, which means that it cannot
be used to (partly) simplify a DP problem. Below we address this problem
by adapting the match-bound technique in such a way that it can remove
single rules of P . We introduce two new enrichments top-DP(P , s→ t,R) and
match-DP(P , s → t,R) to achieve this. The basic idea behind these TRSs is
that every infinite sequence of (P ,R) in which s → t, the rule that is to be
removed from P , is used infinitely often is simulated by a height increasing
infinite sequence.

Definition 39 Let S be a TRS over a signature F . The TRS e-DP(S) over
the signature FN consists of all rules l′ → liftc(r) such that base(l′) → r ∈ S
and

c = min ({height(l′(ε))} ∪ {1 + height(l′(p)) | p ∈ e(base(l′), r)})

20

Given a DP problem (P ,R) and a rule s→ t ∈ P, the TRS e-DP(P , s→ t,R)
is defined as the union of e-DP((P\{s→ t})∪R) and e(s→ t). The restriction
of e-DP(S) and e-DP(P , s → t,R) to the signature F{0,...,c} is denoted by
e-DPc(S) and e-DPc(P , s→ t,R).

Example 40 Consider the DP problem (P ,R) withR consisting of the rewrite
rules f(g(x), y) → g(h(x, y)) and h(x, y) → f(x, g(y)), and P = DP(R) con-
sisting of F(g(x), y)→ H(x, y) and H(x, y)→ F(x, g(y)). Let s→ t be the first
of the two dependency pairs. Then match-DP(R) contains the rules

f0(g0(x), y)→ g0(h0(x, y)) h0(x, y)→ f0(x, g0(y))

f0(g1(x), y)→ g0(h0(x, y)) h1(x, y)→ f1(x, g1(y))

f2(g0(x), y)→ g1(h1(x, y)) · · ·

match-DP(P \ {s→ t}) contains

H0(x, y)→ F0(x, g0(y)) H1(x, y)→ F1(x, g1(y))

H2(x, y)→ F2(x, g2(y)) · · ·

and match(s→ t) contains

F0(g0(x), y)→ H1(x, y) F1(g0(x), y)→ H1(x, y)

F0(g1(x), y)→ H1(x, y) · · ·

The union of these three infinite TRSs constitutes match-DP(P , s→ t,R). If
we replace match(s→ t) by match-DP({s→ t}), which consists of the rules

F0(g0(x), y)→ H0(x, y) F1(g0(x), y)→ H1(x, y)

F0(g1(x), y)→ H0(x, y) · · ·

we obtain the TRS match-DP(P∪R). Note that all TRSs have infinitely many
rewrite rules.

The idea now is to use the enrichment e-DP(P , s→ t,R) to simplify the DP
problem (P ,R) into (P \ {s→ t},R). For that we need the property defined
below.

Definition 41 Let (P ,R) be a DP problem and let s → t ∈ P. We call
(P ,R) e-DP-bounded for s → t and a set of terms L if there exists a num-
ber c ∈ N such that the height of function symbols occurring in terms in
→∗e-DP(P,s→t,R)(lift0(L)) is at most c.

To ensure that the TRS e-DP(P , s → t,R) can assist to prove finiteness of
the DP problem (P ,R), it is crucial that every minimal rewrite sequence in
(P ,R) with infinitely many

ε−→s→t rewrite steps can be simulated by an infinite
height increasing sequence in e-DP(P , s → t,R). To this end it is important

21

that rewrite rules in e-DP((P \ {s→ t}) ∪ R) do not propagate the minimal
height of the contracted redex unless the height of the root symbol of the
redex is minimal. This is the reason for the slightly complicated definition of
c in Definition 39. The following example shows what goes wrong if we would
simplify the definition.

Example 42 Consider the DP problem (P ,R) withR consisting of the rewrite
rules f(x) → g(x) and g(a(x)) → f(a(x)) and P = DP(R) consisting of
F(x) → G(x) and G(a(x)) → F(a(x)). The DP problem (P ,R) is not finite
because the term G(a(x)) admits a minimal rewrite sequence. If we change the
definition of c in Definition 39 to

c = min {height(l′(p)) | p ∈ e(base(l′), r)}

then for s→ t = F(x)→ G(y) we have

F0(a0(x))→match(s→t) G1(a0(x))→match-DP(P\{s→t}) F0(a0(x))

and it would follow that (P ,R) is match-DP-bounded for F(x) → G(x). As
we will see later, this would imply that we can remove F(x) → G(x) from P.
Because the remaining DP problem is finite we would falsely conclude termi-
nation of the original TRS R.

An immediate consequence of the next lemma is that every derivation accord-
ing to the DP problem (P ,R) can be simulated using the rules in e-DP(P , s→
t,R).

Lemma 43 Let (P ,R) be a left-linear DP problem and s→ t ∈ P. If u→s→t
v or u →(P\{s→t})∪R v then for all terms u′ with base(u′) = u there exists a
term v′ such that base(v′) = v and u′ →e(s→t) v

′ or u′ →e-DP((P\{s→t})∪R) v
′.

PROOF. Straightforward. 2

To be able to use the concept of e-DP-boundedness to simplify DP problems,
we need to ensure that no restriction of e-DP(P , s→ t,R) to a finite signature
admits minimal rewrite sequences with infinitely many

ε−→e(s→t) rewrite steps.
For e = top this is shown below. Note that if we use e-DP(P ∪ R) instead
of e-DP(P , s → t,R) then this property does not hold because every rewrite
sequence in P ∪R can be simulated by an e-DP0(P ∪R)-sequence.

Lemma 44 Let (P ,R) be a DP problem, let s → t ∈ P, and let c > 0. The
TRS top-DPc(P , s → t,R) does not admit rewrite sequences with infinitely
many

ε−→top(s→t) rewrite steps.

22

PROOF. Assume to the contrary that there is such an infinite rewrite se-
quence

s1
ε−→top(s→t) t1 →∗top-DP((P\{s→t})∪R) s2

ε−→top(s→t) t2 →∗top-DP((P\{s→t})∪R) · · ·

Because the root symbols in P do not appear anywhere else in P or R, we
know that only rewrite rules from top-DP(P \ {s → t}) and top(s → t)
are applied at root positions. Every rewrite rule l → r in top-DP(P \ {s →
t}) has the property that height(l(ε)) = height(r(ε)). Hence height(ti(ε)) =
height(si+1(ε)) for all i > 1. By definition, for every l → r ∈ top(s → t) we
have height(r(ε)) = height(l(ε)) + 1 and thus height(ti(ε)) = height(si(ε)) +
1 for all i > 1. It follows that height(tc+1(ε)) > c + 1, contradicting the
assumption. 2

Theorem 45 Let (P ,R) be a DP problem and let s→ t ∈ P such that (P ,R)
is top-DP-bounded for s→ t and a set of terms L. If P ∪R is left-linear then
(P ,R) is finite on L if and only if (P \ {s→ t},R) is finite on L.

PROOF. The only-if direction is trivial. For the if direction, suppose that
the DP problem (P \ {s → t},R) is finite on L. If (P ,R) is not finite on L
then there exists a minimal rewrite sequence

s1
ε−→s→t t1 →∗(P\{s→t})∪R s2

ε−→s→t t2 →∗(P\{s→t})∪R s3
ε−→s→t · · ·

with s1 ∈ L. Due to left-linearity, this sequence can be lifted to an infi-
nite top-DP(P , s → t,R) rewrite sequence starting from lift0(s1). Since the
original sequence contains infinitely many

ε−→s→t rewrite steps the lifted se-
quence contains infinitely many

ε−→top(s→t) rewrite steps. Moreover, because
(P ,R) is top-DP-bounded for L, there is a c > 0 such that the height of ev-
ery function symbol occurring in a term in the lifted sequence is at most
c. Hence the employed rules must come from top-DPc(P , s → t,R) and
therefore top-DPc(P , s → t,R) contains a minimal rewrite sequence consist-
ing of infinitely many

ε−→top(s→t) rewrite steps. This however is excluded by
Lemma 44. 2

If we restrict Lemma 44 to minimal rewrite sequences, it also holds for e =
match provided R and P are non-duplicating. The proof is considerably more
complicated and given in Appendix A.

Lemma 46 Let (P ,R) be a DP problem, let s → t ∈ P, and let c > 0. If
P∪R is non-duplicating then the TRS match-DPc(P , s→ t,R) does not admit
minimal rewrite sequences with infinitely many

ε−→match(s→t) rewrite steps.

23

Theorem 47 Let (P ,R) be a DP problem and let s→ t ∈ P such that (P ,R)
is match-DP-bounded for s→ t and a set of terms L. If P ∪R is linear then
(P ,R) is finite on L if and only if (P \ {s→ t},R) is finite on L.

PROOF. Similarly to the proof of Theorem 45, using Lemma 46 instead
of Lemma 44. Note that in the presence of left-linearity, the non-duplicating
requirement in Lemma 46 is equivalent to linearity. 2

We conjecture that Lemma 44 also holds for e = roof. A positive solution
is important as roof-bounds are strictly more powerful than top-bounds (see
Section 9 and [11]).

Corollary 48 The DP processor

(P ,R) 7→

{(P \ {s→ t},R)} if (P ,R) is left-linear and top-DP-bounded

or linear and match-DP-bounded for s→ t
and T (F)

{(P ,R)} otherwise

where F is the signature of P ∪R, is sound and complete.

PROOF. Immediate consequence of Theorems 45 and 47. 2

6.2 Raise-DP-Bounds for Non-Left-Linear DP Problems

In order to apply the DP processor of Theorem 38 to non-left-linear TRSs, we
use e-raise-bounds instead of e-bounds.

Theorem 49 The DP processor

(P ,R) 7→

∅ if P ∪R is top-raise-bounded, roof-raise-bounded,

or non-duplicating and match-raise-bounded for T (F)

{(P ,R)} otherwise

where F is the signature of P ∪R, is sound and complete. 2

PROOF. Similar to the proof of Theorem 38 by using Theorem 13 instead
of Theorem 4. 2

24

Similar as in the case of e-bounds, e-DP-bounds can be used only for DP
problems (P ,R) consisting of left-linear TRSs P and R. The reason is that
without left-linearity, rewrite sequences in (P ,R) cannot be lifted to sequences
in e-DP(P , s→ t,R), cf. Lemma 43. As described in Section 2 one can solve
that problem by considering the relation 2 >−→e-DP(P,s→t,R) which uses raise
rules to deal with non-left-linear rewrite rules.

Definition 50 Let (P ,R) be a DP problem and let s → t ∈ P. We call
(P ,R) e-raise-DP-bounded for s → t and a set of terms L if there ex-
ists a c ∈ N such that the height of function symbols occurring in terms in
>−→∗e-DP(P,s→t,R)(lift0(L)) is at most c.

Note that for left-linear DP problems, e-raise-DP-boundedness coincides with
e-DP-boundedness. An immediate consequence of the next lemma is that every
derivation according to the DP problem (P ,R) can be simulated using the
rewrite relation

>−→e-DP(P,s→t,R).

Lemma 51 Let (P ,R) be a DP problem and s → t ∈ P. If u →s→t v or
u →(P\{s→t})∪R v then for all terms u′ with base(u′) = u there exists a term
v′ such that base(v′) = v and u′

>−→e(s→t) v
′ or u′

>−→e-DP((P\{s→t})∪R) v
′.

PROOF. Straightforward. 2

The following two results correspond to Lemmata 44 and 46.

Lemma 52 Let (P ,R) be a DP problem, let s → t ∈ P, and let c > 0. The
TRS top-DPc(P , s→ t,R) does not admit

>−→ rewrite sequences with infinitely
many

>−→top(s→t) root-rewrite steps.

PROOF. Similar to the proof of Lemma 44, using
>−→top-DP(P\{s→t}∪R) instead

of →top-DP(P\{s→t}∪R) and
>−→top(s→t) instead of

ε−→top(s→t). 2

Lemma 53 Let (P ,R) be a DP problem, let s → t ∈ P, and let c > 0.
If P ∪ R is non-duplicating then the TRS match-DPc(P , s → t,R) does not
admit minimal

>−→ rewrite sequences with infinitely many
>−→match(s→t) root-

rewrite steps.

PROOF. Straightforward adaption of the proof of Lemma 46 given in Ap-
pendix A. 2

2 This relation is obtained by replacing e(R) with e-DP(P, s→ t,R) in Definition 9.

25

Theorem 54 Let (P ,R) be a DP problem, s→ t ∈ P, and L a set of terms.
If (P ,R) is top-raise-DP-bounded for s→ t and L then (P ,R) is finite on L
if and only if (P \ {s→ t},R) is finite on L. If P and R are non-duplicating
and (P ,R) is match-raise-DP-bounded for s → t and L then (P ,R) is finite
on L if and only if (P \ {s→ t},R) is finite on L.

PROOF. The only-if direction is trivial. For the if direction, suppose that
the DP problem (P \ {s → t},R) is finite on L. If (P ,R) is not finite on L
then there exists a minimal rewrite sequence

s1
ε−→s→t t1 →∗(P\{s→t})∪R s2

ε−→s→t t2 →∗(P\{s→t})∪R s3
ε−→s→t · · ·

with s1 ∈ L. By Lemma 51, this rewrite sequence can be lifted to an infi-
nite

>−→e-DP(P,s→t,R) rewrite sequence starting from lift0(s1). Since the original
sequence contains infinitely many

ε−→s→t rewrite steps the lifted sequence con-
tains infinitely many

>−→e(s→t) root-rewrite steps. Moreover, because (P ,R)
is e-raise-DP-bounded for L, there is a c > 0 such that the height of ev-
ery function symbol occurring in a term in the lifted sequence is at most c.
Hence the employed rules must come from e-DPc(P , s → t,R) and there-
fore e-DPc(P , s → t,R) contains a minimal

>−→ rewrite sequence consisting
of infinitely many

>−→e(s→t) root-rewrite steps. This however is excluded by
Lemmata 52 and 53. 2

Corollary 55 The DP processor

(P ,R) 7→

{(P \ {s→ t},R)} if (P ,R) is top-raise-DP-bounded or non-

duplicating and match-raise-DP-bounded
for s→ t and T (F)

{(P ,R)} otherwise

where F is the signature of P ∪R, is sound and complete.

PROOF. Immediate consequence of Theorem 54. 2

6.3 Compatible Tree Automata

In order to prove automatically that a DP problem is e(-raise)-DP-bounded
for some language L we use compatible (quasi-deterministic) tree automata
as defined in Section 3.

Lemma 56 Let (P ,R) be a DP problem such that P and R are left-linear
and let s → t ∈ P. Let A be a tree automaton. If A is compatible with
e-DP(P , s→ t,R) and lift0(L) then (P ,R) is e-DP-bounded for s→ t and L.

26

PROOF. Easy consequence of Theorem 17. 2

Lemma 57 Let (P ,R) be a DP problem, s → t ∈ P and L a language.
Let A be a quasi-deterministic and raise-consistent tree automaton. If A is
compatible with e-DP(P , s → t,R) and lift0(L) then (P ,R) is e-raise-DP-
bounded for s→ t and L.

PROOF. Similar as the proof of Theorem 30 if we take F to be the signature
of P ∪R and replace e(R) by e-DP(P , s→ t,R). 2

Example 58 We show that the DP problem (P ,R) of Example 40 over the
signature F = {a, f, g, h,F,H} is match-DP-bounded for F(g(x), y) → H(x, y)
by constructing a compatible tree automaton. As starting point we consider the
initial tree automaton

a0 → 1 f0(1, 1)→ 1 g0(1)→ 1

h0(1, 1)→ 1 F0(1, 1)→ 2 H0(1, 1)→ 2

which accepts the set of all ground terms that have F0 or H0 as root symbol
and a0, f0, g0, and h0 below the root. Since F0(g0(x), y) →match(s→t) H1(x, y)
and F0(g0(1), 1) →∗ 2, we add the transition H1(1, 1) → 2. Next we con-
sider H1(x, y)→match-DP(P\{s→t}) F1(x, g1(y)) with H1(1, 1)→ 2. By adding the
transitions F1(1, 3) → 2 and g1(1) → 3 this compatibility violation is solved.
After that the rewrite rule F1(g0(x), y)→match(s→t) H1(x, y) and the derivation
F1(g0(1), 3) →∗ 2 give rise to the transition H1(1, 3) → 2. Finally we have
H1(x, y) →match-DP(P\{s→t}) F1(x, g1(y)) and H1(1, 3) → 2. In order to ensure
F1(1, g1(3))→∗ 2 we reuse the transition F1(1, 3)→ 2 and add the new transi-
tion g1(3)→ 3. After that step, the obtained tree automaton is compatible with
match-DP(P , s→ t,R). Hence the DP problem (P ,R) is match-DP-bounded
for F(g(x), y)→ H(x, y) by 1. Applying the DP processor of Corollary 48 yields
the new DP problem ({H(x, y) → F(x, g(y))},R), which is easily (and auto-
matically by numerous DP processors) shown to be finite. We note that the
DP processor of Theorem 38 fails on (P ,R).

Similar as for e-raise-bounds we can optimize the completion procedure by
constructing a quasi-deterministic and raise-consistent tree-automaton that is
quasi-compatible with e-DP(P , s→ t,R) and lift0(L).

Theorem 59 Let (P ,R) be a DP problem and L a language. Let A be a quasi-
deterministic and raise-consistent tree automaton. If A is quasi-compatible
with e-DP(P , s → t,R) and lift0(L) then (P ,R) is e-raise-DP-bounded for
s→ t and L.

27

PROOF. Similar to the proof of Theorem 35; just replace e(R) by e-DP(P , s→
t,R). 2

7 Usable Rules

A widely used approach to increase the power of DP processors is to consider
only those rewrite rules of R which are usable [1,15,16,19]. Let R be a TRS
and t be a term. The function tcap(R, t) [15] is defined as

tcap(R, t) = f(tcap(R, t1), . . . , tcap(R, tn))

if t = f(t1, . . . , tn) and f(tcap(R, t1), . . . , tcap(R, tn)) does not unify with any
l ∈ lhs(R). Otherwise tcap(R, t) = x for some fresh variable x. For a DP
problem (P ,R), the set of usable rules is defined as

U(P ,R) =
⋃

s→t∈P
U(t)

where U(t) ⊆ R denotes the smallest set of rules such that

• U(r) ⊆ U(t) if l→ r ∈ U(t),
• U(u) ⊆ U(t) if u is a subterm of t, and
• l→ r ∈ U(t) if t = f(t1, . . . , tn) and f(tcap(t1), . . . , tcap(tn)) unifies with a
l ∈ lhs(R).

Furthermore, in the case that P or R is duplicating we have c(x, y) → x ∈
U(P ,R) and c(x, y)→ y ∈ U(P ,R) for some fresh function symbol c. The two
projection rules ensure that (P ,U(P ,R)) admits an infinite rewrite sequence
whenever (P ,R) is not finite.

Let us illustrate the above definitions on a small example.

Example 60 Consider the DP problem (P ,R) withR consisting of the rewrite
rules

p(s(x))→ x fac(s(x))→ s(x)× fac(p(s(x))) fac(0)→ 0

and P consisting of the two dependency pairs Fac(s(x)) → Fac(p(s(x))) and
Fac(s(x)) → P(s(x)) of R. We have tcap(R, x) = y, tcap(R, s(x)) = s(y),
and tcap(R, p(s(x))) = y as well as U(Fac(p(s(x)))) = {p(s(x)) → x} and
U(P(s(x))) = ∅. Hence U(P ,R) = {p(s(x))→ x}.

Since in general the transformation from (P ,R) to (P ,U(P ,R)) does not
preserve minimality (i.e., the property that the terms t1, t2, . . . are terminating
in the definition on page 19) of rewrite sequences if P or R is duplicating [17],

28

it must be guaranteed that the DP processors of Theorems 38 and 49 as well
as Corollaries 48 and 55 do not rely on the minimality of infinite rewrite
sequences. For the DP processors of Theorems 38 and 49 this is obviously the
case, since e(-raise)-bounds take all infinite rewrite sequences into account.
For the DP processors of Corollaries 48 and 55 with e = top this follows from
Lemmata 44 and 52. For e = match there is also no problem since e = match
can only be used for non-duplicating systems and it is known that usable
rules can be used without restrictions for non-duplicating systems. 3 Thus we
obtain the following results.

Corollary 61 Let (P ,R) be a DP problem and let L be a language. If P ∪
U(P ,R) is both left-linear and e-bounded for L or e-raise-bounded for L then
(P ,R) is finite. 2

Corollary 62 Let (P ,R) be a DP problem, s → t ∈ P and let L be a lan-
guage. If P ∪ U(P ,R) is left-linear and (P ,U(P ,R)) is e-DP-bounded for
s → t and L then (P ,R) is finite if and only if (P \ {s → t},R) is finite. If
(P ,U(P ,R)) is e-raise-DP-bounded for s → t and L then (P ,R) is finite if
and only if (P \ {s→ t},R) is finite. 2

Example 63 Consider again the DP problem (P ,R) of Example 60. We have
U(P ,R) = {p(s(x)) → x}. Let s → t be the first of the two dependency
pairs. By using Corollary 48 together with Corollary 62 we can show that
(P ,U(P ,R)) is match-DP-bounded for s→ t by 1. Without using usable rules
the DP processor of Corollary 48 fails. The reason is that for (P ,R), top-DP-
bounds must be used because (P ,R) is duplicating. However by using top-DP-
bounds we do not succeed in constructing a tree automaton that is compatible
with top-DP(P , s→ t,R).

Note that the DP processors of Theorems 38 and 49 and Corollaries 48 and 55
are in general incomparable to the ones obtained from Corollaries 61 and 62.
The reason is that by using U(P ,R) instead of R it is possible that for dupli-
cating P ∪ R, (P ,U(P ,R)) admits an infinite sequence with infinitely many
s→ t rewrite steps whereas (P ,R) does not.

Example 64 Consider the TRS R consisting of the rewrite rule f(a, b, x)→
f(x, x, x). There is one dependency pair, namely F(a, b, x) → F(x, x, x). By
using Corollary 48 one can easily check that (DP(R),R) is top-DP-bounded
for F(a, b, x)→ F(x, x, x) by 1 and hence finite. If we combine the DP proces-
sor of Corollary 48 with usable rules, finiteness of (DP(R),R) can no longer
be shown since (DP(R),U(DP(R),R)) admits the following minimal cyclic

3 In [14, Example 14] and [19, Theorem 23] this has been shown for a slightly
different definition of usable rules. Nevertheless, this result carries over to the present
setting without any problems.

29

sequence:

F(a, b, g(a, b))→DP(R) F(g(a, b), g(a, b), g(a, b))

→U(DP(R),R) F(a, g(a, b), g(a, b))→U(DP(R),R) F(a, b, g(a, b))

Here U(DP(R),R) = {g(x, y)→ x, g(x, y)→ y}.

8 Forward Closures

When proving the termination of a TRS R that is non-overlapping [12] or
right-linear [4] it is sufficient to restrict attention to the set RFCrhs(R)(R) of
right-hand sides of forward closures. This set is defined as the closure of the
right-hand sides of the rules inR under narrowing. More formally, RFCL(R) is
the least extension of L such that t[r]pσ ∈ RFCL(R) whenever t ∈ RFCL(R)
and there exist a position p ∈ FPos(t) and a fresh variant l → r of a rewrite
rule in R with σ a most general unifier of t|p and l. Dershowitz [4] obtained
the following result.

Theorem 65 A right-linear TRS R is terminating if and only if R is termi-
nating on RFCrhs(R)(R). 2

If we want to prove termination using dependency pairs, we can benefit from
the properties of DP problems.

Lemma 66 Let (P ,R) be a DP problem. If P and R are right-linear then
(P ,R) is finite if and only if it is finite on RFCrhs(P)(P ∪R).

PROOF. Easy consequence of Theorem 65 and the definition of DP prob-
lems. 2

Lemma 66 can be used in connection with the DP processors of Theorems 38
and 49. For the DP processors of Corollaries 48 and 55 we can do better. Since
the proof is considerably more complicated than the previous one it is deferred
to Appendix B.

Lemma 67 Let (P ,R) be a DP problem and let s → t ∈ P. If P and R
are right-linear then (P ,R) admits a minimal rewrite sequence with infinitely
many

ε−→s→t rewrite steps if and only if it admits such a sequence starting from
a term in RFC{t}(P ∪R).

The following concept has been introduced in [11]. It enables the simulation of
narrowing in the definition of right-hand sides of forward closures by rewriting.

30

This makes it possible to use tree automata to compute an approximation of
RFCL(R) for linear R.

Definition 68 Let R be a TRS. The TRS R# is defined as the least extension
of R that is closed under the following operation. If l → r ∈ R# and p ∈
FPos(l) \ {ε} then l[#]p → rσ ∈ R#. Here the substitution σ is defined by
σ(x) = # if x ∈ Var(l|p) and σ(x) = x otherwise. The substitution that maps
all variables to # is denoted by σ#. Here # is a fresh function symbol.

The following results are proved in [11].

Lemma 69 Let R be a linear TRS and L a set of linear terms. We have
RFCL(R)σ# =→∗R#

(Lσ#). 2

Corollary 70 If a linear TRS R is match-bounded for →∗R#
(rhs(R)σ#) then

R is terminating. 2

In the case that we consider a DP problem (P ,R) the following results can
be derived from Lemma 69.

Corollary 71 Let (P ,R) be a DP problem with linear P and R. If (P ,R) is
match-bounded for →∗(P∪R)#

(rhs(P)σ#) then (P ,R) is finite.

PROOF. Since RFCrhs(P)(P ∪R)σ# is equal to →∗(P∪R)#
(rhs(P)σ#), P ∪R

is also match-raise-bounded for RFCrhs(P)(P ∪ R)σ#. (Recall that for linear
P and R, match-boundedness coincide with match-raise-boundedness.) Theo-
rem 13 yields the termination of P∪R on RFCrhs(P)(P∪R)σ#. Since rewriting
is closed under substitution, P ∪ R is terminating on RFCrhs(P)(P ∪ R) and
hence (P ,R) is finite for RFCrhs(P)(P ∪ R). Applying Lemma 66 yields the
finiteness of (P ,R). 2

Corollary 72 Let (P ,R) be a DP problem with linear P and R, and let
s → t ∈ P. If (P ,R) is match-DP-bounded for s → t and →∗(P∪R)#

({t}σ#)

then (P ,R) is finite if and only if (P \ {s→ t},R) is finite.

PROOF. Since RFC{t}(P ∪ R)σ# is equal to →∗(P∪R)#
({t}σ#), (P ,R) is

also match-raise-DP-bounded for s → t and RFC{t}(P ∪ R)σ#. (Recall that
for linear P and R, match-DP-boundedness coincide with match-raise-DP-
boundedness.) Theorem 54 yields that (P ,R) is finite on RFC{t}(P ∪ R)σ#

if and only if (P \ {s→ t},R) is finite on RFC{t}(P ∪R)σ#. Since rewriting
is closed under substitution, (P ,R) is finite on RFC{t}(P ∪ R) if and only if
(P \ {s → t},R) is finite on RFC{t}(P ∪ R). From Lemma 67 we conclude
that (P ,R) is finite if and only if (P \ {s→ t},R) is finite. 2

31

In order to obtain corresponding results for arbitrary right-linear TRSs, we
linearize left-hand sides of rewrite rules.

Definition 73 Let t be a term. The set of linear terms s with Var(t) ⊆ Var(s)
for which there exists a variable substitution τ : Var(s) \Var(t)→ Var(t) such
that sτ = t is denoted by linear(t). Let R be a TRS. The set of rewrite rules
{l′ → r | l→ r ∈ R and l′ ∈ linear(l)} is denoted by linear(R).

In the following we write R′# for linear(R)#. Note that R# = R′# for linear
TRSsR. In general linear(R) and henceR′# consists of infinitely many rewrite
rules since variables in Var(l′)\Var(l) are not constrained. When using R′# to
approximate RFCL(R)σ# it is enough to consider a finite subset of R′# which
ignores different variants of rules.

Lemma 74 Let R be a right-linear TRS and L a set of linear terms. We have
RFCL(R)σ# ⊆ →∗R′

#
(Lσ#).

PROOF. Applying Lemma 69 to linear(R) yields RFCL(linear(R))σ# =
→∗R′

#
(Lσ#). Hence it is sufficient to prove that RFCL(R)σ# is a subset of

RFCL(linear(R))σ#.

First we prove that every term t ∈ RFCL(R) is linear. We use induction on
the derivation of t. If t ∈ rhs(R) then t is linear because R is right-linear.
Let t = s[r]pσ with s ∈ RFCL(R), l → r a fresh variant of a rewrite rule
in R, and σ a most general unifier of s|p and l. According to the induction
hypothesis s is linear. Hence Var(s|p)∩ Var(s[2]p) = ∅. From the linearity of
r, Var(l)∩Var(s) = ∅, Var(r) ⊆ Var(l), and the fact that σ is a most general
unifier, we obtain that rσ is linear and Var(rσ) ∩ Var(sσ[2]p) = ∅. It follows
that t is linear.

Next we show that RFCL(R) ⊆ RFCL(linear(R)), which immediately gives
RFCL(R)σ# ⊆ RFCL(linear(R))σ#. Assume to the contrary that this does
not hold. This is only possible if there are a term t ∈ RFCL(R) a position p ∈
FPos(t), a fresh variant l→ r of a rewrite rule inR, and a most general unifier
σ of t|p and l such that t[r]pσ ∈ RFCL(R), and t[r]pσ /∈ RFCL(linear(R)).
Since l and t do not share variables, we may assume without loss of generality
that σ is idempotent. In order to arrive at a contradiction, we construct a term
l′ ∈ linear(l) and a most general unifier σ′ of l′ and t|p such that t[r]pσ

′ = t[r]pσ.
Write l = C[x1, . . . , xn] with all variables displayed. Let q1, . . . , qn be the
positions of these variables. Because σ is idempotent and t is linear, for every
variable x ∈ Var(l) with xσ 6= x there exists a position qx ∈ {q1, . . . , qn} such
that xσ = t|pqx . We now replace every xi in l with qi 6= qxi

by a fresh variable.
This yields a term l′ ∈ linear(l). Let σ′ be an idempotent most general unifier
of l′ and t|p. It follows from the construction of l′ that σ(x) = σ′(x) for all

32

variables x ∈ Var(l) ⊆ Var(l′). Since Var(r) ⊆ Var(l), t[r]pσ
′ = t[r]pσ as

desired. 2

The following example shows what can go wrong if we would not consider all
linearizations of the TRS R.

Example 75 Consider the TRS R consisting of the following rewrite rules:

f(x, x)→ f(h(x), a) f(h(x), x)→ g(x) g(x)→ f(x, a)

For the language L = rhs(R), RFCL(R)σ# consists of the following terms:

g(#) g(a) f(#, a) f(a, a)

f(h(#), a) f(h(a), a)

If linear(R) would consist of the rewrite rules

f(x, x′)→ f(h(x), a) f(h(x), x′)→ g(x) g(x)→ f(x, a)

then RFCL(linear(R))σ# = {g(hi(#)), f(hi(#), a) | i > 0}. Note that g(a) is
missing, invalidating Lemma 74. In the proof the linearization f(h(x′), x) →
g(x) of f(h(x), x)→ g(x) is constructed because the right-hand side f(h(y), a) is
unified with f(h(x), x) to produce the term g(a) and only the second occurrence
of x is mapped to a subterm of f(h(y), a). We remark that R is non-terminating
since it admits the cycle g(a) →R f(a, a) →R f(h(a), a) →R g(a). However, it
is easy to see that R is terminating on RFCL(linear(R))σ#: f(hi(#), a) is a
normal form and g(hi(#)) rewrites only to f(hi(#), a), for all i > 0.

The following example shows that the reverse inclusion of Lemma 74 does not
hold.

Example 76 For the TRS R = {f(x, x) → f(b, g(x)), a → b} we have
RFCrhs(R)(R)σ# = {f(b, g(#)), b} and →∗R′

#
(rhs(R)σ#) = {b, f(b, gi(#)),

f(b, gi(b)) | i > 1}.

Corollary 77 Let R be a right-linear TRS. If R is match-raise-bounded for
→∗R′

#
(rhs(R)σ#) then R is terminating.

PROOF. Since RFCrhs(R)(R)σ# is a subset of→∗R′
#

(rhs(R)σ#) according to

Lemma 74, R is also match-raise-bounded for RFCrhs(R)(R)σ#. Theorem 13
yields the termination of R on RFCrhs(R)(R)σ#. Since rewriting is closed un-
der substitution, R is terminating on RFCrhs(R)(R). From Theorem 65 we
conclude that R is terminating on all terms. 2

33

The above result extends to DP problems without problems; simply replace
(P ∪R)# by (P ∪R)′# in the proofs of Corollaries 71 and 72.

Corollary 78 Let (P ,R) be a DP problem with right-linear P and R. If P∪R
is match-raise-bounded for →∗(P∪R)′

#
(rhs(P)σ#) then (P ,R) is finite. 2

Corollary 79 Let (P ,R) be a DP problem such that P and R are right-
linear TRSs. Let s → t ∈ P. If (P ,R) is match-raise-DP-bounded for s → t
and →∗(P∪R)′

#
({tσ#}) then (P ,R) is finite if and only if (P \ {s → t},R) is

finite. 2

In order to show that a DP problem (P ,R) is match(-raise)-DP-bounded for
a rewrite rule s→ t and L =→∗(P∪R)′

#
({tσ#}) we have to construct a (quasi-

deterministic and raise-consistent) tree automaton that is (quasi-)compatible
with match-DP(P , s→ t,R) and lift0(L). We do that by performing two steps.
At first we construct a tree automaton A that is compatible with (P∪R)′# and
{tσ#}. Since (P ∪R)′# is left-linear we know by Theorem 17 that L(A) ⊇ L.
In a second step we search for a (quasi-deterministic and raise-consistent)
tree automaton that is (quasi-)compatible with match-DP(P , s → t,R) and
lift0(L) as described in Section 3 (Section 5). If such an automaton has been
found we know that (P ,R) is match(-raise)-DP-bounded for s → t and L. If
P ∪ R is left-linear the two steps can be combined in an optimized way as
described in [11].

9 Experimental Results

The techniques described in the preceding sections are implemented in the ter-
mination prover TTT2 [26]. TTT2 is written in OCaml 4 and consists of about
30000 lines of code. About 15% is used to implement the match-bound tech-
nique.

Since quasi-determinisation is expensive, TTT2 collects and resolves all (quasi-)
compatibility violations with respect to the current automaton before making
the automaton quasi-deterministic. Then new (quasi-)compatibility violations
are determined and the process is repeated. The violations are resolved by
adding new transitions according to the following strategy, which is a variation
of the one used by Matchbox [27]. To establish a path rσ →∗∆ q, TTT2

(1) calculates all contexts C[2, . . . ,2], D1[2, . . . ,2], . . . , Dn[2, . . . ,2] and
terms t1, . . . , tm ∈ T (F , Q) so that C[D1[t1, . . . , ti], . . . , Dn[tj, . . . , tm]] =

4 http://caml.inria.fr/

34

Table 1
Summary e-raise-bounds

no RFC RFC

explicit implicit explicit implicit

t r rm t r rm t r rm t r rm

successes 11 11 12 17 17 19 32 32 32 39 40 41

average time 25 26 24 62 24 23 12 12 13 98 249 243
using

timeouts 147 147 146 141 141 139 126 126 126 119 118 117
c

successes 11 11 12 17 17 19 32 32 32 40 40 41

average time 11 12 11 39 20 18 8 8 8 963 188 185
using

timeouts 147 147 146 141 141 139 126 126 126 118 118 117
qc

rσ, C[q1, . . . , qn] →∗∆ q, and ti →∗∆ qti for states q1, . . . , qn, qt1 , . . . , qtm ∈
Q,

(2) chooses among all possibilities one where the combined size of the con-
texts D1[2, . . . ,2], . . . , Dn[2, . . . ,2] is minimal,

(3) adds new transitions involving new states to achieve D1[qt1 , . . . , qti] →∗
q1, . . . , Dn[qtj , . . . , qtm]→∗ qn.

An important criterion for the success of e(-raise)-DP-bounds is the choice
of the rewrite rule from P that should be removed from the DP problem
(P ,R) under consideration. To find a suitable rule, TTT2 simply starts the
construction of a (quasi-)compatible tree automaton for each s → t ∈ P in
parallel. As soon as one of the processes terminates the procedure stops and
returns the corresponding rule.

Below we report on the experiments we performed with TTT2 on the 1331
TRSs in version 5.0 of the Termination Problem Data Base that fulfill the
variable condition, i.e., Var(r) ⊆ Var(l) for each rewrite rule l→ r ∈ R. 5 All
tests were performed on a workstation equipped with an Intel R© PentiumTM M
processor running at a CPU rate of 2 GHz and 1 GB of system memory. Our
results are summarized in Tables 1 and 2. 6 We list the number of successful
termination attempts, the average system time needed to prove termination
(measured in milliseconds), and the number of timeouts. For all experiments
we used a 60 seconds time limit.

In Table 1 we deal with non-left-linear systems (158 TRSs in total) and

5 http://www.termination-portal.org/
6 Full experimental data can be found at http://cl-informatik.uibk.ac.at/
software/ttt2/experiments/matchbounds/.

35

Table 2
Summary e(-raise)-DP-bounds

no RFC RFC

no ur ur no ur ur

sp spb spd spb spd spb spd spb spd

successes 498 559 587 585 612 575 589 606 616

average time 111 101 190 98 223 106 152 133 152
using

timeouts 12 772 744 746 719 756 742 725 715
c

successes 498 559 589 586 614 575 591 606 618

average time 111 102 218 150 249 111 156 131 165
using

timeouts 12 772 742 745 717 756 740 725 713
qc

test for e-raise-boundedness, both with the explicit approach for handling
raise rules described in the first paragraph of Section 4 and the implicit ap-
proach using raise-consistent tree automata. To simplify the representation
we use the abbreviations t, r and m to indicate that we test for top-, roof-,
and match-raise-boundedness. Since match-raise-bounds can be only used if
the given TRS is non-duplicating, we combine match-raise-bounds with roof-
raise-bounds (indicated by rm). That means that if the TRS under consid-
eration is non-duplicating we test for match-raise-boundedness; duplicating
TRSs are tested for roof-raise-boundedness. In the upper part of the table
we construct compatible tree automata (indicated by c) whereas in the lower
part quasi-compatible tree automata (indicated by qc) are used. The posi-
tive effect of forward closures (Corollary 77) is clearly visible. By constructing
quasi-compatible tree automata instead of compatible tree automata we get an
average speed up of 1.4. Furthermore, our results confirm that match-bounds
are more powerful than roof-bounds, which in turn are more powerful than
top-bounds.

Table 2 shows our results for e(-raise)-DP-bounds. Besides the recursive SCC
algorithm [18] and the improved estimated dependency graph processor [15],
we use the following four DP processors:

s the subterm criterion of [19],
p polynomial orderings with 0/1 coefficients [17],
b the DP processor of Theorem 38 for left-linear DP problems and the one of

Theorem 49 for non-left-linear DP problems,
d the DP processor of Corollary 48 for left-linear DP problems and the one

of Corollary 55 for non-left-linear DP problems.

For the latter two, if the DP problem is non-duplicating we take e = match.

36

For duplicating problems we take e = roof for b and e = top for d. The usage
of usable rules (see Corollaries 61 and 62) is indicated by ur. The advantage of
the DP processors of Corollaries 48 and 55 over the naive ones of Theorems 38
and 49 is clear, although the difference decreases when usable rules and RFC
are in effect. Furthermore, by using quasi-compatible tree automata instead
of compatible tree automata we obtain some additional termination proofs.

Although not visible from the data in Table 2, our experiments confirm the
claim at the end of Section 7 that usable rules can have an adverse effect. For
instance, the TRS Zantema/z28 can be proved terminating by TTT2 using top-
DP-bounds. If we compute usable rules in advance, termination can no longer
be shown because the added projection rules cause the (quasi-)completion pro-
cedure to loop. However, restricting the computation of usable rules to non-
duplicating systems in order to avoid these projection rules is not a good strat-
egy since there are duplicating TRSs such as SchneiderKamp/trs/otto01

which can only be proved terminating with help of usable rules.

The TRS secret07/TTT2/2 in the Termination Problem Data Base can be
proved terminating by TTT2 using match-DP-raise-bounds and RFC. None of
the other tools that participated in the termination competitions of 2007 7 and
2008 8 could handle this TRS. The same holds for the TRS TRCSR/Ex2 Luc02a

iGM and the string rewrite system Waldmann07b/size-12-alpha-3-num-469.
The former is handled by TTT2 using top-DP-bounds and the latter using
match-DP-bounds together with RFC. In 2008 TTT2 found the following ele-
gant termination proof.

Example 80 The TRS secret06/matchbox/gen-25 (R in the following)
consists of the following rewrite rules:

c(c(z, x, a), a, y)→ f(f(c(y, a, f(c(z, y, x)))))

f(f(c(a, y, z)))→ b(y, b(z, z))

b(a, f(b(b(z, y), a)))→ z

The dependency graph contains one strongly connected component, consisting
of the dependency pairs

1: C(c(z, x, a), a, y)→ C(y, a, f(c(z, y, x)))

2 : C(c(z, x, a), a, y)→ C(z, y, x)

Hence termination of R is reduced to finiteness of the DP problem ({1, 2},R).
This problem is top-DP-bounded for rule 1; the compatible tree automaton

7 http://www.lri.fr/~marche/termination-competition/2007
8 http://termcomp.uibk.ac.at

37

computed by TTT2 consists of the following transitions:

a0 → 1 c0(2, 2, 2)→ 4 C0(1, 5, 1)→ 3 f1(16)→ 17

a1 → 6 c1(1, 1, 1)→ 10 C0(2, 1, 5)→ 3 f1(17)→ 4

b0(1, 1)→ 1 c1(1, 2, 1)→ 14 C1(5, 6, 8)→ 3 f1(20)→ 21

b1(1, 1)→ 9 c1(1, 5, 1)→ 7 f0(1)→ 1 f1(22)→ 23

b1(1, 9)→ 1 c1(1, 6, 11)→ 12 f0(4)→ 5 f1(23)→ 12

b1(6, 18)→ 1 | 10 | 14 c1(1, 11, 1)→ 20 f1(7)→ 8 f1(24)→ 25

b1(6, 19)→ 4 c1(1, 15, 1)→ 24 f1(10)→ 11 f1(26)→ 27

b1(11, 11)→ 18 c1(2, 6, 15)→ 16 f1(12)→ 13 f1(27)→ 16

b1(15, 15)→ 19 c1(11, 6, 21)→ 22 f1(14)→ 15 1→ 2 | 9
c0(1, 1, 1)→ 1 c1(15, 6, 25)→ 26 f1(13)→ 1 | 10 | 14 6→ 1

Hence the DP processor of Corollary 48 is applicable. This results in the new
DP problem ({2},R), which is proved finite by the subterm criterion with the
simple projection π(C) = 1.

10 Conclusion

In this paper we extended the match-bound technique in two directions. We
showed how non-left-linear rules can be treated by raise rules. To verify e-raise-
boundedness, we introduced quasi-deterministic tree automata. Furthermore,
to be able to handle raise rules properly during the completion process we
introduced the notion of raise-consistent tree automata. We further showed
how the match-bound technique can be incorporated into the dependency pair
framework. For that purpose we introduced two new enrichments which take
care of the special properties of dependency pair problems. We showed how
to strengthen the method by taking usable rules and forward closures into
account. Experimental results demonstrated the usefulness of our results.

An important open question is whether we can use the roof enrichment in
connection with dependency pairs. To ensure soundness of roof(-raise)-DP-
bounds, it has to be proved that no restriction of roof-DP(P , s → t,R) to
a finite signature admits a minimal rewrite sequence with infinitely many
ε−→roof(s→t) (

>−→roof(s→t)) rewrite steps. We conjecture that this claim holds for
arbitrary P and R. A positive solution would make additional termination
proofs possible: The number of successes in the spd columns in Table 2 in-
creases by 6 (when usable rules are in effect) and 8 (without usable rules).

38

Acknowledgements

We thank the anonymous referees for providing numerous suggestions which
helped to improve the presentation.

References

[1] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236(1-2):133–178, 2000.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[3] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available from www.
grappa.univ-lille3.fr/tata, 2002.

[4] N. Dershowitz. Termination of linear rewriting systems (preliminary version).
In Proceedings of the 8th International Colloquium on Automata, Languages
and Programming (ICALP), volume 115, pages 448–458, 1981.

[5] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer
Science, 17(3):279–301, 1982.

[6] J. Endrullis, D. Hofbauer, and J. Waldmann. Decomposing terminating rewrite
relations. In Proceedings of the 8th International Workshop on Termination
(WST), pages 39–43, 2006.

[7] T. Genet. Decidable approximations of sets of descendants and sets of
normal forms. In Proceedings of the 9th International Conference on Rewriting
Techniques and Applications (RTA), volume 1379 of Lecture Notes in Computer
Science, pages 151–165, 1998.

[8] A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string rewriting
systems. Applicable Algebra in Engineering, Communication and Computing,
15(3-4):149–171, 2004.

[9] A. Geser, D. Hofbauer, and J. Waldmann. Termination proofs for string
rewriting systems via inverse match-bounds. Journal of Automated Reasoning,
34(4):365–385, 2005.

[10] A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. Finding finite automata
that certify termination of string rewriting systems. International Journal of
Foundations of Computer Science, 16(3):471–486, 2005.

[11] A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata
that certify termination of left-linear term rewriting systems. Information and
Computation, 205(4):512–534, 2007.

39

[12] O. Geupel. Overlap closures and termination of term rewriting systems. Report
MIP-8922, Universität Passau, 1989.

[13] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic
termination proofs in the dependency pair framework. In Proceedings of the
3rd International Joint Conference on Automated Reasoning (IJCAR), volume
4130 of Lecture Notes in Artificial Intelligence, pages 281–286, 2006.

[14] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair
framework: Combining techniques for automated termination proofs. In
Proceedings of the 11th International Conference on Logic Programming and
Automated Reasoning (LPAR), volume 3425 of Lecture Notes in Artificial
Intelligence, pages 301–331, 2004.

[15] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving
termination of higher-order functions. In Proceedings of the 5th International
Workshop on Frontiers of Combining Systems (FroCoS), volume 3717 of Lecture
Notes in Artificial Intelligence, pages 216–231, 2005.

[16] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Improving
dependency pairs. In Proceedings of the 10th International Conference on Logic
Programming and Automated Reasoning (LPAR), volume 2850 of Lecture Notes
in Artificial Intelligence, pages 167–182, 2003.

[17] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and
improving dependency pairs. Journal of Automated Reasoning, 37(3):155–203,
2006.

[18] N. Hirokawa and A. Middeldorp. Automating the dependency pair method.
Information and Computation, 199(1-2):172–199, 2005.

[19] N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and
features. Information and Computation, 205(4):474–511, 2007.

[20] Jambox. Available from http://joerg.endrullis.de.

[21] M. Korp and A. Middeldorp. Proving termination of rewrite systems using
bounds. In Proceedings of the 18th International Conference on Rewriting
Techniques and Applications (RTA), volume 4533 of Lecture Notes in Computer
Science, pages 273–287, 2007.

[22] M. Korp and A. Middeldorp. Match-bounds with dependency pairs for
proving termination of rewrite systems. In Proceedings of the 2nd International
Conference on Language and Automata Theory and Applications (LATA),
volume 5196 of Lecture Notes in Computer Science, pages 321–332, 2008.

[23] A. Middeldorp. Approximating dependency graphs using tree automata
techniques. In Proceedings of the 1st International Joint Conference on
Automated Reasoning (IJCAR), volume 2083 of Lecture Notes in Artificial
Intelligence, pages 593–610, 2001.

[24] T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting
systems. Information and Computation, 178(2):499–514, 2002.

40

[25] R. Thiemann. The DP Framework for Proving Termination of Term Rewriting.
PhD thesis, RWTH Aachen, 2007. Available as technical report AIB-2007-17.

[26] Tyrolean Termination Tool 2. Available from http://cl-informatik.uibk.
ac.at/software/ttt2.

[27] J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In
Proceedings of the 15th International Conference on Rewriting Techniques and
Applications (RTA), volume 3091 of Lecture Notes in Computer Science, pages
85–94, 2004.

[28] H. Zantema. Termination of rewriting proved automatically. Journal of
Automated Reasoning, 34(2):105–139, 2005.

A Soundness of Match(-Raise)-DP-Bounds

In this appendix we present the proof of Lemma 46. To prove that every
restriction of match-DP(P , s → t,R) to a finite signature does not admit
minimal rewrite sequences with infinitely many

ε−→match(s→t) rewrite steps, we
mark function symbols of terms as active and inactive to trace the propagation
of heights. The idea to consider active and inactive areas of terms occurring
in derivations originates from [4]. Below we recall the most important infor-
mation.

For a signature F , F denotes the set {f | f ∈ F} where f is a fresh function
symbol with the same arity as f . The function symbols in F are called active
whereas those in F are called inactive. The mappings label : F → F and
unlabel : F → F are defined as label(f) = f and unlabel(f) = f . They are
extended to terms and sets of terms in the obvious way. A term s ∈ T (F∪F ,V)
is called inactive if s = unlabel(s). For a term s ∈ T (F ,V) the set mark(s)
consists of all terms t which can be divided into a context C ∈ T (F ∪{2},V)
and terms t1, . . . , tn ∈ T (F ,V) such that t = C[t1, . . . , tn] and unlabel(t) = s.
For terms s, t ∈ T (F ∪ F ,V) with unlabel(s) = unlabel(t) we write s _ t for
the term u that is uniquely determined by the two conditions (i) unlabel(u) =
unlabel(s) and (ii) for each position p ∈ FPos(u) we have u(p) ∈ F if and
only if s(p) ∈ F or t(p) ∈ F . We extend this notion to _S for finite non-empty
sets S ⊂ T (F ∪F ,V) consisting of terms that have the same unlabeled image.

Definition 81 Let R be a TRS over a signature F . The TRS R over the
signature F ∪ F consists of all rewrite rules l → r for which there exists
a rewrite rule l′ → r′ ∈ R such that l ∈ mark(l′), unlabel(r) = r′, and
r ∈ T (F ,V) if l(ε) ∈ F and r ∈ T (F ,V) if l(ε) ∈ F .

Example 82 Consider the TRS R consisting of the rewrite rules f(s(x), y)→
s(g(x, p(y))), g(p(x), s(y))→ y, and g(x, x)→ f(s(x), x). The TRS R consists

41

of the following rewrite rules:

f(s(x), y)→ s(g(x, p(y))) g(p(x), s(y))→ y g(x, x)→ f(s(x), x)

f(s(x), y)→ s(g(x, p(y))) g(p(x), s(y))→ y g(x, x)→ f(s(x), x)

f(s(x), y)→ s(g(x, p(y))) g(p(x), s(y))→ y

g(p(x), s(y))→ y

g(p(x), s(y))→ y

Definition 83 Let R be a TRS over a signature F . We define the relation _
on T (F ∪F ,V) as follows: s _R t if and only if there exist a rewrite rule l→
r ∈ R, a position p ∈ Pos(s), a context C, and terms s1, . . . , sn such that l =
C[x1, . . . , xn] with all variables displayed, s|p = C[s1, . . . , sn], unlabel(si) =
unlabel(sj) whenever xi = xj, and t = s[rθ]p. Here the substitution θ is defined
as follows:

θ(x) =

 _{si | xi = x} if x ∈ {x1, . . . , xn}
x otherwise

An immediate consequence of the next lemma is that every rewrite sequence
in R can be lifted to a rewrite sequence in R.

Lemma 84 Let R be a TRS over a signature F . If s→R t then for all terms
s′ ∈ mark(s) there exists a term t′ ∈ mark(t) such that s′ _R t

′. 2

Definition 85 Let R be a TRS over the signature F , l → r ∈ R a rewrite
rule, t a term, p ∈ Pos(t) a position, and σ a substitution. The rewrite step
t[lσ]p _ t[rσ]p is said to be active if t(p) ∈ F and inactive if t(p) ∈ F . We
use

a_ to denote active steps and
i_ to denote inactive steps. An active rewrite

step t[lσ]p
a_ t[rσ]p is said to be strongly active if Fun(l) ⊆ F .

Example 86 With respect to the TRS R of the previous example, the term
f(s(p(x)), g(p(y), s(x))) admits the following rewrite sequence:

f(s(p(x)), g(p(y), s(x)))
i_R f(s(p(x)), x)
a_R s(g(p(x), p(x)))
a_R s(f(s(p(x)), p(x)))

Note that the second active rewrite step is strongly active.

A second important property of R is that active function symbols always stay
above inactive function symbols.

Lemma 87 Let R be a TRS over a signature F and s ∈ T (F ∪F ,V) a term
such that s ∈ mark(unlabel(s)). If s _∗

R t then t ∈ mark(unlabel(t)). 2

The proof of Lemma 46 is based on the observation that from some point on

42

in each minimal _match-DP(P,s→t,R)-rewrite sequence only strongly active steps
are applied. Below we prove the correctness of this observation. Minimal terms
in Lemma 88 are terms that have the property that all proper subterms are
terminating.

Lemma 88 Let R be a non-duplicating TRS over a signature F and s ∈
T (F ∪ F ,V) a minimal term such that the root symbol of s is active and all
other function symbols are inactive. If s starts a rewrite sequence s = s1 _R
s2 _R · · · then there exists an i > 1 such that all rewrite steps in the rewrite
sequence starting from si are strongly active.

PROOF. The proof of this lemma is based on the following observations:

• active
a_R steps cannot increase the number of inactive symbols because R

is non-duplicating,
• proper subterms of s are terminating due to the minimality assumption,
• maximal inactive subterms of sj for j > 1 can be traced back to inactive

subterms of s.

The first two observations holds trivially. To show the correctness of the last
one, we prove the following claim:

If t _∗
R u for some terms t, u ∈ T (F∪F ,V) such that t ∈ mark(unlabel(t)),

then for each inactive subterm u′ of u there is an inactive subterm t′ of t
and a context C such that t′

i_∗
R C[u′].

We prove the claim by induction on the length of the derivation. The base case
is trivial. Assume now that t _+

R u. Then there are a position p, a substitution
σ, and a rewrite rule l → r ∈ R such that t _∗

R u[lσ]p _ u[rσ]p = u. Let u′

be an inactive subterm of u at some position q ‖ p. Then u′ = u[lσ]p|q. Due to
the induction hypothesis we know that there exists an inactive subterm t′ of
t and a context C such that t′

i_∗
R C[u′]. Assume now that u′ is an inactive

subterm of u at some position q such that either q < p or q > p. We distinguish
between these two cases.

• If q < p then u[lσ]p
i_ u. Let v = (u[lσ]p)|q. Obviously, v is an inac-

tive subterm of u[lσ]p and v
i_l→r u

′. The induction hypothesis yields an
inactive subterm t′ of t and a context C such that t′

i_∗
R C[v]. Hence

t′
i_∗
R C[v]

i_l→r C[u′].
• If q > p then either u[lσ]p

i_ u or u[lσ]p
a_ u. In the former case we

have lσ
i_l→r D[u′] for some context D. The induction hypothesis yields

an inactive subterm t′ of t and a context C such that t′
i_∗
R C[lσ]. Hence

t′
i_∗
R C[D[u′]]. Next suppose that u[lσ]p

a_ u. Since all function symbols
of r are active, we conclude that u′ is a subterm of xσ for some variable x ∈
Var(r). Hence u′ is an inactive subterm of u[lσ]p. The induction hypothesis

43

yields an inactive subterm t′ of t and a context C such that t′
i_∗
R C[u′].

This concludes the proof of the claim.

Now, from the above observations it follows that the infinite sequence starting
from s contains only finitely many inactive

i_R steps. Hence a tail of the
sequence consists entirely of

a_R steps. Steps in this tail that are not strongly
active consume at least one inactive symbol whereas the strongly active steps
do not increase the number of inactive symbols. Hence from some point, only
strongly active steps are applied. This completes the proof of the lemma. 2

The following example shows that the previous lemma does not hold for du-
plicating TRS. Hence it cannot be used to prove soundness of roof-DP(P , s→
t,R).

Example 89 Consider the TRS R consisting of the rewrite rules a→ b and
f(a, b, x)→ f(x, x, x). The term f(a, b, a) admits the rewrite sequence

f(a, b, a)
a_R f(a, a, a)

i_R f(a, b, a)
a_R · · ·

Since this sequence does not contain any strongly active rewrite steps, it is
obvious that the previous lemma does not hold.

By using the rewrite relation _match-DP(P,s→t,R) we are now ready to prove that
no restriction of match-DP(P , s→ t,R) to a finite signature admits minimal
rewrite sequences with infinitely many

ε−→match(s→t) rewrite steps.

PROOF (of Lemma 46). Assume to the contrary that there is a minimal
rewrite sequence of the form

s1
ε−→match(s→t) t1 →∗match-DP(P,s→t,R) s2

ε−→match(s→t) t2 →∗match-DP(P,s→t,R) · · ·

where we assume without loss of generality that s1 ∈ T (F{0},V). Here F
denotes the signature of P ∪ R. To trace the propagation of heights in this
sequence we switch from → to _. To simplify the representation we assume
that for terms s′···′i we have unlabel(s′···′i) = si. Moreover, the infinite rewrite
sequence starting from s′···′i is projected onto the above sequence from si by
applying the unlabel operation. The terms s′···′i will be constructed as we go
along. To prove the lemma, we first prove the following claim (illustrated in
Figure A.1):

Let s′i be a term such that (i) all rewrite steps in the infinite rewrite sequence
starting from s′i are strongly active and (ii) the height of all active symbols
in s′i is at least n. Further let s′′i be the term obtained from s′i by labeling all
function symbols as inactive except the root symbol. Then there is a term

44

Fig. A.1. The claim in the proof of Lemma 46

> n

< n

s′i

a
ct

iv
e

in
a
ct

iv
e

transform
=⇒

> n

< n

s′′i

a
ct

iv
e

in
a
ct

iv
e

_∗
match-DP(P,s→t,R)

> n
= n
< n

s′′j

a
ct

iv
e

in
a
ct

iv
e

s′′j with j > i such that all rewrite steps of the infinite sequence starting at
s′′j are strongly active and the height of every active function symbol in s′′j
is at least n+ 1.

Lemma 88 yields a term s′′j with j > i such that all rewrite steps of the rewrite
sequence starting from s′′j are strongly active. Because all rewrite steps in the
infinite rewrite sequence starting from s′i are strongly active, we know that
whenever

s′i
a_∗

match-DP(P,s→t,R) u = u[lσ]p
a_match-DP(P,s→t,R) u[rσ]p

for some term u, rewrite rule l→ r, position p, and substitution σ, the minimal
height of function symbols in l is at least n. Since the rewrite sequence starting
from s′i is equivalent to the rewrite sequence starting at the term s′′i after
unlabeling, this property holds also for s′′i . Since the rewrite step s′′i _match(s→t)
t′′i is active, we know that the height of all active function symbols in t′′i is at
least n+ 1. Hence, whenever

t′′i _∗
match-DP(P,s→t,R) u = u[lσ]p

a_match-DP(P,s→t,R) u[rσ]p

the height of the root symbol of l is at least n+ 1. Together with the fact that
the minimal height of the function symbols in the redex pattern of an active
rewrite step is at least n, we can conclude from Definition 39 that the height
of each active function symbol in s′′j must be at least n + 1. This completes
the proof of the claim.

Now let s′1 be the term obtained from s1 by marking the root symbol as active.
Lemma 88 yields a term s′i1 with i1 > 1 such that s′1 _∗

match-DP(P,s→t,R) s
′
i1

and
all rewrite steps in the rewrite sequence starting from s′i1 are strongly active.
Since s′1

a_match(s→t) t′1, we know that the height of every active function
symbol in t′1 is 1. It follows that the height of each active function symbol
in s′i1 is at least 1. Let s′′i1 be the term obtained from s′i1 by inactivating all
function symbols below the root. Applying the claim yields a term s′′i2 with
i2 > i1 such that all rewrite steps in the infinite sequence starting from s′′i2 are
strongly active and the height of all active function symbols in s′′i2 is at least 2.
Repeating this argumentation produces increasingly greater heights. As soon
as we reach height c + 1 we obtain a contradiction with the assumptions of
Lemma 46. 2

45

B Correctness of RFCt(P ∪R)

In this appendix we present the proof of Lemma 67. Similar as in the proof
of Lemma 46, we use the rewrite relation _ to obtain detailed information
about derivations.

PROOF (of Lemma 67). To prove the only-if direction, let

s1
ε−→s→t t1 →∗(P\{s→t})∪R s2

ε−→s→t t2 →∗(P\{s→t})∪R · · ·

be a minimal rewrite sequence. To trace the application of rewrite rules in this
sequence we switch from → to _. Let s′1 be the term obtained from s1 by
marking the root symbol as active. Lemma 88 yields an i > 1 such that all
rewrite steps in the rewrite sequence starting from s′i are strongly active. Let
l1 → r1, . . . , ln → rn be (fresh variants of) rewrite rules in P ∪R such that

s′1
a_s→t t

′
1

i_∗
R u1

a_l1→r1 v1
i_∗
R u2

a_l2→r2 v2
i_∗
R · · ·

a_ln→rn vn
i_∗
R s
′
i

with all active steps displayed and let p1, . . . , pn be the positions at which
the rewrite rules l1 → r1, . . . , ln → rn are applied. To prove the lemma we
first show that we can characterize the active region of s′i with the help of the
definition of the right-hand sides of forward closures. Let v0 = t′1. We define
linear terms w0, . . . , wn ∈ T (F ,V) and substitutions τ0, . . . , τn : V → T (F ,V)
such that for all 0 6 j 6 n the following properties hold: (1) vj = wjτj and
(2) unlabel(wj) ∈ RFC{t}(P ∪R).

We perform induction on j. First consider j = 0. Define w0 = label(t). Since
unlabel(w0) = t, property (2) holds trivially. Since P is right-linear, w0 is
linear. Obviously, w0 ∈ T (F ,V). Since t′1 = v0 is an instance of label(t), there
exists a substitution τ0 such that w0τ0 = v0. We may assume that τ0 : V →
T (F ,V) as there are no other active symbols in v0 besides the ones in label(t).
Hence property (1) also holds.

Now let j > 1. Since all steps that take place between vj−1 and uj are in-
active, we infer that the active part part of uj is identical to the active
part of vj−1. Since the active rewrite step uj

a_lj→rj vj requires that the
root symbol of the contracted redex is active we know that pj is an ac-
tive position in vj−1 and thus a non-variable position in wj−1. Let l′j → r′j
be the rule in P ∪R that is used to rewrite uj to vj. (So lj = unlabel(l′j)
and r′j = label(rj).) Since wj−1 is linear, it follows that wj−1|pj

unifies with
l′j. Let σj be an idempotent most general unifier of these two terms. Define
wj = wj−1[r′j]pj

σj. Since wj−1 is linear, Var(wj−1)∩Var(l′j) = ∅, and σj is idem-
potent, (Var(wj−1)\Var(wj−1|pj

))∩Dom(σj) = ∅ and thus wj = wj−1[r′jσj]pj
.

Because wj−1 contains only active function symbols, xσj = label(xσj) for all

46

x ∈ Var(l′j) and hence wj ∈ T (F ,V). Since P and R are right-linear, it fol-
lows that wj is linear. We have wj−1[l′jσj]pj

a_ wj−1[r′jσj]pj
= wj. It follows

that wj represents the active region of vj and thus vj = wjτj for some sub-
stitution τj : V → T (F ,V), which proves property (1). Property (2) holds by
construction.

Since vn
i_∗ s′i, the active part of s′i is the same as the active part of vn. It

follows that s′i = wnτ for some substitution τ : V → T (F ,V). Since all rewrite
steps in the infinite sequence starting from s′i are strongly active, these steps
can also be performed when starting from wn. Removing all labels produces an
infinite sequence starting at the term unlabel(wn) with the desired properties.

The if direction of the lemma holds trivially. 2

47

