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Abstract

In this note we present two proofs that the derivational complexity of the bits function is linear.
The first proof is intuitive but not very suitable for implementation while the second one has been
found automatically. Using the second proof idea allows the complexity tool CaT to show linear
derivational complexity of the bits function for which no other current contemporary analyzer can
infer a polynomial upper bound. In the second part of this note we generalize the weight gap principle
of (Hirokawa and Moser, 2008).

1 Introduction

Hofbauer and Lautemann [5] consider the length of derivations as a measurement for the complexity
of terminating rewrite systems. The resulting notion of derivational complexity relates the length of a
rewrite sequence to the size of its starting term. Thereby it is, e.g., a suitable metric for the complexity
of deciding the word problem for a given confluent and terminating rewrite system (since the decision
procedure rewrites terms to normal form).

To show (feasible) upper bounds on the derivational complexity currently few techniques are known.
Typically termination criteria are restricted such that polynomial upper bounds can be inferred. The early
work by Hofbauer and Lautemann [5] considers polynomial interpretations, suitably restricted, to admit
quadratic derivational complexity. Match-bounds [2] and arctic matrix interpretations (AMIs) [7, 8] in-
duce linear derivational complexity and triangular matrix interpretations (TMIs) [9] admit polynomially
long derivations (the dimension of the matrices yields the degree of the polynomial). All these methods
share the property that until now they have been used directly only, meaning that a single termination
technique has to orient all rules in one go. However, using direct criteria exclusively is problematic due
to their restricted power.

In the sequel we consider the TRSRbits (nontermin/AG01/#4.28 from [10])

half(0)→ 0 bits(0)→ 0

half(s(0))→ 0 bits(s(x))→ s(bits(half(s(x))))
half(s(s(x)))→ s(half(x))

and present two proofs that the derivational complexity of the TRS Rbits is linear, i.e., a term of size
n admits at most derivations of length O(n). This result is somehow surprising due to the last rule.
(Note that already a single rule f(g(x))→ g(f(x)) causes the derivational complexity to be quadratic.)
The first proof is presented in Section 3 and is based on a low level reasoning exploiting the structure
of the TRS Rbits. Although the reasoning is intuitive it is hard to automate. The second proof given in
Section 4 builds on a recent result by the authors that allows to combine different complexity criteria for
a single TRS [11]. This approach is very suitable for implementation and linear derivational complexity
of the TRS Rbits can be inferred completely automatically by our complexity analyzer CaT.1 Note that
currently no other tool can show linear (not even polynomial) derivational complexity of the TRSRbits.
∗ This research is supported by FWF (Austrian Science Fund) project P18763.

1 http://cl-informatik.uibk.ac.at/software/cat
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After the presentation of the bits example we focus on the weight gap principle introduced in [4]. We
show in Section 5 how it can be generalized such that in principle arbitrary techniques can be plugged
in.

2 Preliminaries

We assume familiarity with rewriting [1]. A relative TRS R/S consists of two TRSs R and S with
the rewrite relation →R/S=→∗S · →R · →∗S . The derivation length of a term t with respect to a rela-
tion → and the set of terms is defined as follows: dl(t,→) = max{m | ∃u t→m u}. The derivational
complexity computes the maximal derivation length of all terms up to a given size, i.e., dc(n,→) =
max{dl(t,→) | |t| 6 n}. Sometimes we say that R (R/S) has linear, quadratic, etc. derivational com-
plexity if dc(n,→R) (dc(n,→R/S)) can be bounded by a linear, quadratic, etc. polynomial in n. TMIs
of dimension one are called SLIs. For the remainder of this note we assume that TRSs are finite.

3 Hand-Made Proof

To simplify the presentation of the first proof of the linear derivational complexity of the TRS Rbits

we abbreviate sn(0) by n and drop parentheses if no confusion can arise. At first we show that each
derivation induced by a term of the form bits n has at most length 3n. To this end we need the following
technical lemma.

Lemma 1. Let t= bits n. If n= 0 then t→ 0. If n > 0 then t→2+ n
2 s bits n

2 .

Proof. We have t→ s bits half n→n/2 s bits n
2 half m→ s bits n

2 where m= 0 or m= 1.

Lemma 2. Let t= bits n. Then dl(t,→R) 6 3n.

Proof. We restrict our attention to a special reduction. Since R is terminating (see [3, Example 5]) and
has the diamond property this is fine. Using Lemma 1 we obtain the finite rewrite sequence

t→2+ n
2 s bits

n

2
→2+ n

4 s s bits
n

4
→2+ n

8 · · · →2+ n

2k s kbits
n

2k

where k = dlog(n)e. Since k 6 n we have

∑
16i6k

(2+
n

2i
) 6 2n+n · ∑

16i6n

1
2i

6 3n

and hence dl(t,→R) 6 3n as desired

At next we prove that each term of the form bits mn admits at most linear derivation length. To prove
this claim we need the property that logi(n) 6 n

2i if logi(n) > 0 for all n > 3 and i ∈ N. This is show
below.

Lemma 3. For any n > 3 and i ∈ N with logi(n)> 0 we have logi(n) 6 n
2i .

Proof. We perform induction on i. If i= 0 then n6 n
20 = n. For the step case we claim that log(n) 6 n

2
for all n > 3. Using the claim as well as monotonicity of log (on n > 0) we obtain:

logi+1(n) = log(logi(n)) 6 log(
n

2i
) 6

n

2i+1

It remains to show that the claim is correct. We have log(n) 6 n
2 ⇔ 2log(n) 6 n ⇔ 22log(n) 6 2n ⇔

2log(n)2log(n) 6 2n⇔ n ·n6 2n⇔ n2 6 2n. The latter can be shown by an easy induction on n.

2



The Derivational Complexity of the Bits Function H. Zankl and M. Korp

Lemma 4. Let n > 3 and t= bitsmn. Then dl(t,→R) 6 6n+m.

Proof. First we assume that n is large enough such that all logi(n) are positive. By Lemma 2 we can
then estimate a sequence as follows:

t→63n s bitsm−1 log(n)→63log(n) s s bitsm−2 log2(n)→63log2(n) · · · →63logm−1(n) s m logm(n)

Using Lemma 3 we conclude that this sequence admits at most

3n+ ∑
16i6m

3logi(n) 6 3n+ ∑
16i6m

3
n

2i
6 3n+3n ∑

16i6m

1
2i

6 6n

steps. In the other case there is a k6m such that t→66n sk bitsm−k 0→m−k sk 0. Putting things together
finishes the proof.

Since bits 4 admits longer derivations as bits 3, by Lemma 4 we obtain the following corollary.

Corollary 5. Let t= bitsmn. Then dl(t,→R) 6 6n+m+24.

Since the terms considered in Corollary 5 have longest derivations we obtain the next result.

Corollary 6. The derivational complexity of the TRSR is linear.

4 Automated Proof

Contemporary methods for proving the derivational complexity of TRSs (automatically) comprise match-
bounds [2], AMIs [7, 8] and TMIs [9]. These criteria can be preceded by (complexity-preserving) trans-
formations. Usually one method must orient all rewrite rules strictly to deduce an upper bound on the
derivational complexity of a TRS. Our experiments revealed that none of the above methods can conclude
polynomial derivational complexity of the TRS Rbits on its own. Recently [11] introduced a modular
approach that allows to combine different criteria for complexity analysis by relative rewriting. Suddenly
a polynomial (even linear!) upper bound on the derivational complexity can be inferred automatically.
We recall the main results that allow to handle the TRS Rbits. The first theorem presented is one of the
main results from [11].

Theorem 7. Let (R1∪R2)/S be a relative TRS and let t be a term such that t terminates with respect
to (R1∪R2)/S. Then O(dl(t,→(R1 ∪R2)/S)) = max{O(dl(t,→R1/S1)),O(dl(t,→R2/S2))} .

The next theorem generalizes the weight gap principle introduced in [4] to relative rewriting.

Theorem 8. Let (R1∪R2)/S be a relative TRS,R1 be non-duplicating, and letM be an SLI such that
R2 ⊆�M and S ⊆ �M. Then for anyR1 andM there exist constants K and L such that

K ·dl(t,→R1/(R2 ∪S))+L · |t|> dl(t,→(R1 ∪R2)/S)

whenever t is terminating on (R1∪R2)/S.

Using the above theorems it is easy to show that the TRSRbits admits linear derivational complexity.

Theorem 9. The derivational complexity of the TRSRbits is at most linear.
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Proof. Obviously dl(t,→R) is equal to dl(t,→R/∅). By Theorem 8 with an SLI that counts the symbols
bits,half,s further progress is achieved and the derivational complexity of Rbits/∅ can be estimated by
analyzing the complexity of the rule bits(s(x))→ s(bits(half(s(x)))) relative to the other rules. For the
last step there is an arctic interpretation of dimension three, i.e.,

bitsA(~x) =

0 00
003
$00

~x halfA(~x) =

0 $$
0$$
0$$

~x sA(x) =

0 $0
012
2$0

x 0A =

0
$
$


that orients the problematic rule strictly and the remaining rules weakly. Hence the derivational com-
plexity of the TRSRbits is at most linear.

Note that the proof of Theorem 9 has been constructed automatically by CaT within a few seconds.
Furthermore we stress that the involved reasoning is on a higher level compared to the handmade proof.
This also eases the task of (automated) certification.

5 Derivation Gap Principle

Based on the success of the modular complexity approach using relative rewriting, in this section we
aim to generalize the weight gap principle from [4] into the so-called derivation gap principle. Provided
that R satisfies some property, the new result allows us to establish an upper bound on the derivational
complexity ofR∪S based on the derivational complexities ofR/S and S.

Theorem 10. Let R∪S be a TRS and t be terminating on R∪S. If there exists a constant ∆ such that
for any s→R t we have dl(s,→S)+∆ > dl(t,→S) then dc(n,→R∪S) ∈O(dc(n,→R/S)+dc(n,→S)).

Proof. We show that under the above assumptions there exists a constant K such that dl(t,→R∪S) 6
K ·dl(t,→R/S)+dl(t,→S). Consider a maximal derivation inR∪S , written as follows:

s1→k1
S t1→R s2→k2

S t2→R · · · →R sm→km
S tm

Since the derivation is maximal we have dl(s1,→R∪S) 6 dl(s1,→R/S)+∑16i6m ki. Obviously we have
dl(s1,→S) > dl(t1,→S)+ k1. Because dl(t1,→S) > dl(s2,→S)−∆ according to underlying assump-
tion we obtain dl(s1,→S) > dl(s2,→S)−∆ +k1. An easy induction proof shows dl(s1,→S)+m ·∆ >
∑16i6m ki. Hence dl(s1,→R∪S) 6 dl(s1,→R/S)+dl(s1,→S)+∆ ·dl(s1,→R/S) which can be simpli-
fied to dl(s1,→R∪S) 6 (∆+1) ·dl(s1,→R/S)+dl(s1,→S). Taking K = ∆+1 concludes the proof.

To implement the above theorem the question arises how to check that s→R t implies the desired
dl(s,→S)+ ∆ > dl(t,→S) for some constant ∆. Here the idea is to test dl(l,→S)+ ∆ > dl(r,→S) for
any l→ r ∈ R and demand that additionally C[l]+ ∆ > C[r] and lσ+ ∆ > rσ holds for all contexts C
and substitutions σ. Note that dl(l,→S) can always be under-approximated by 0 while dl(r,→S) can be
over-approximated, e.g., by some interpretation of r.

As we know from [4] SLIs can be used to get a concrete instance of Theorem 10. Below we give
counterexamples that TMIs, AMIs, and match-bounds do not adhere to the derivation gap principle
without further ado. As future work we plan to restrict these criteria accordingly such that they become
applicable for Theorem 10. The TRSR∪S in the next example was proposed by Hofbauer [6].

Example 11. Consider the following two TRSs

R= {c(L(x))→ R(x)} S = {R(a(x))→ b(b(R(x))),R(x)→ L(x),b(L(x))→ L(a(x))}
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We observe that the derivational complexity ofR∪S is exponential because cn(L(a(x)))→∗ L(a2n
(x)).

Furthermore the derivational complexity ofR/S is linear (count c’s). Since the TMIMT with

aM(~x) =
(

1 0
01

)
~x+

(
0
1

)
bM(~x) =

(
1 0
00

)
~x+

(
1
0

)
RM(~x) =

(
1 3
00

)
~x+

(
2
0

)
LM(~x) =

(
1 0
00

)
~x

orients all rules in S strictly—and hence gives a quadratic upper bound on dc(n,→R∪S)—(in general)
TMIs cannot adhere to Theorem 10. The problem is that although there exists a ∆ with dl(l,→S)+∆ >
dl(r,→S) for all l→ r ∈ R this property is not closed under contexts; if arbitrary TMIs are considered.
Similarly the AMIMA (inducing at most linear derivational complexity of S) with

aM(~x) =
(

0 $
33

)
~x bM(~x) =

(
1 2
$0

)
~x RM(~x) =

(
1 3
02

)
~x LM(~x) =

(
0 $
$$

)
~x

violates the same requirement in Theorem 10 asMT above. A similar reasoning holds for match-bounds;
one easily verifies that the TRS S is match-bounded by 2.

Summary and Conclusion

In this note we gave two proofs that the derivational complexity of the TRS Rbits is linear. The first
proof gives much insight into the reductions this system admits but the argument is hard for automation.
The second proof has been generated automatically, is formal but does not give much insight into the
system. The second part of the note generalized the weight gap principle of Hirokawa and Moser [4]. As
future work we plan to investigate restrictions of TMIs, AMIs and match-bounds such that they adhere
to Theorem 10.
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