(VAR x y z u) (THEORY (AC plus times)) (RULES 0(S) -> S plus(S, x) -> x plus(0(x), 0(y)) -> 0(plus(x, y)) plus(0(x), 1(y)) -> 1(plus(x, y)) plus(0(x), j(y)) -> j(plus(x, y)) plus(1(x), 1(y)) -> j(plus(1(S), plus(x, y))) plus(j(x), j(y)) -> 1(plus(j(S), plus(x, y))) plus(1(x), j(y)) -> 0(plus(x, y)) opp(S) -> S opp(0(x)) -> 0(opp(x)) opp(1(x)) -> j(opp(x)) opp(j(x)) -> 1(opp(x)) minus(x, y) -> plus(opp(y), x) times(S, x) -> S times(0(x), y) -> 0(times(x, y)) times(1(x), y) -> plus(0(times(x, y)), y) times(j(x), y) -> minus(0(times(x, y)), y) sign(x) -> if_sign(x, S) if_sign(S, x) -> x if_sign(0(x), y) -> if_sign(x, y) if_sign(1(x), y) -> if_sign(x, 1(S)) if_sign(j(x), y) -> if_sign(x, j(S)) abs(x) -> if_abs(x, x, S) if_abs(0(x), y, z) -> if_abs(x, y, z) if_abs(1(x), y, z) -> if_abs(x, y, 1(S)) if_abs(j(x), y, z) -> if_abs(x, y, j(S)) if_abs(S, x, S) -> S if_abs(S, x, 1(S)) -> x if_abs(S, x, j(S)) -> opp(x) min(x, y) -> if_min(minus(abs(y), abs(x)), x, y, S) min'(x, y) -> if_min(minus(abs(1(y)), abs(1(x))), x, y, S) min''(x, y) -> if_min(minus(abs(j(y)), abs(j(x))), x, y, S) if_min(0(x), y, z, u) -> if_min(x, y, z, u) if_min(1(x), y, z, u) -> if_min(x, y, z, 1(S)) if_min(j(x), y, z, u) -> if_min(x, y, z, j(S)) if_min(S, x, y, S) -> x if_min(S, x, y, 1(S)) -> x if_min(S, x, y, j(S)) -> y )