
Decidable Fragments of LTLf Modulo Theories
Luca Geattia, Alessandro Gianolab, Nicola Giganteb and Sarah Winklerb

aUniversity of Udine, Italy
bFree University of Bozen-Bolzano, Italy

ORCiD ID: Luca Geatti https://orcid.org/0000-0002-7125-787X,
Alessandro Gianola https://orcid.org/0000-0003-4216-5199,

Nicola Gigante https://orcid.org/0000-0002-2254-4821, Sarah Winkler https://orcid.org/0000-0001-8114-3107

Abstract. We study Linear Temporal Logic Modulo Theories over
Finite Traces (LTLMT

f), a recently introduced extension of LTL over
finite traces (LTLf) where propositions are replaced by first-order
formulas and where first-order variables referring to different time
points can be compared. In general, LTLMT

f was shown to be semi-
decidable for any decidable first-order theory (e.g., linear arith-
metics), with a tableau-based semi-decision procedure.

In this paper we present a sound and complete pruning rule for the
LTLMT

f tableau. We show that for any LTLMT
f formula that satisfies an

abstract, semantic condition, that we call finite memory, the tableau
augmented with the new rule is also guaranteed to terminate. Last
but not least, this technique allows us to establish novel decidability
results for the satisfiability of several fragments of LTLMT

f , as well as
to give new decidability proofs for classes that are already known.

1 Introduction

Linear Temporal Logic (LTL) [36] and its finite-traces counterpart
(LTLf) [14] are among the most popular formalisms to express prop-
erties of systems both in the formal verification and artificial intelli-
gence communities. LTLf has also recently gained traction in busi-
ness process modeling (BPM) [31, 22], where the real execution of a
(business) process is assumed to be always finite.

Due to its propositional nature, LTL is inherently limited to the
modeling of finite-state systems, while many real-world scenarios,
e.g., systems involving numeric data or data-aware processes [5, 6,
8], are better modeled as infinite-state systems, for which a first-order
setting is needed. Thus, various first-order extensions of LTL have
been studied in the literature. Generally speaking, existing results in
this direction are either purely theoretical (e.g. [32]), or they have
been developed with specific practical scenarios in mind and appear
difficult to apply to more general ones (e.g. [12, 13, 19]).

As a coherent and principled approach to mitigate this situation,
the logic of LTLf modulo theories (LTLMT

f) has been recently intro-
duced [24]. LTLMT

f extends LTLf by replacing propositions with gen-
eral first-order formulas interpreted over arbitrary theories, similar to
how satisfiability modulo theories (SMT) extends the Boolean satis-
fiability problem, and by allowing comparisons between first-order
variables referring to possibly different time points.

In general, LTLMT
f is undecidable, and it has been shown to be

semi-decidable if applied to decidable first-order fragments and/or
theories [24, 25]: Crucially, the semi-decidability result has been
shown by providing an effective SMT-based encoding of a tree-

shaped tableau that, once implemented in the BLACK temporal rea-
soning system [27, 28], has proved to work well in practice. More-
over, being theory-agnostic, the technique works in many different
scenarios, leveraging the many expressive theories, and combina-
tions thereof, supported by modern SMT solvers [2]. Hence, LTLMT

f

provides a general and theoretically well-founded common ground
for first-order temporal logics that, at the same time, can be applied
to complex scenarios. The satisfiability problem asks whether for a
given temporal logic formula ϕ there exists a trace that satisfies ϕ.
Satisfiability is a central problem in linear-time temporal logics since
a range of key verification tasks, including model checking, can be
reduced to it [38, 34].

While undecidability is unavoidable when considering expressive
infinite-state systems and logics to describe them [4, 3, 30, 18], rea-
soning and verification has been shown decidable in several specific
cases [6, 22, 17, 13]. It is thus natural to ask which fragments of
LTLMT

f have a decidable satisfiability problem.
In this paper, we address this question in a general way. First, we

extend the tree-shaped tableau for LTLMT
f provided in [24] with a

pruning rule that guarantees soundness and completeness for any de-
cidable first-order theory, and we give a very general semantic, suffi-
cient condition, called finite memory, that guarantees that the tableau,
augmented with the new rule, is finite (hence, that its construction
terminates). This equips LTLMT

f with a sound and complete semi-
decision procedure that, in particular, is guaranteed to terminate for
any formula that satisfies the finite memory property.

In the next step, we identify a number of syntactic fragments of
LTLMT

f that satisfy the finite memory property, and are therefore de-
cidable. In this way, we both derive novel decidability results, and re-
cast and generalise existing ones in this framework. In particular, we
prove decidability for LTLMT

f formulas that either: do not compare
variables at different time points; only use temporal operators F, X,
and X̃; belong to a bounded lookback fragment that restrict variable
dependencies in a way to require only a bounded amount of memory;
or that are interpreted over arithmetic theories but with first-order
subformulas restricted to variable-to-variable/constant comparisons.

A crucial feature of the new pruning rule is that it is sound and
complete in the general case. It is hence always applicable, avoiding
the need to identify the fragment of the input formula beforehand.
This feature will ease implementation (which we leave for future
work), because a single procedure can be implemented, and opti-
mized, that works for a wide range of decidable fragments as well as
for the semi-decidable general case. These results further improve

https://orcid.org/0000-0002-7125-787X
https://orcid.org/0000-0003-4216-5199
https://orcid.org/0000-0002-2254-4821
https://orcid.org/0000-0001-8114-3107

the applicability of LTLMT
f in many scenarios involving complex

infinite-state systems, e.g. verification tasks from the areas of knowl-
edge representation or BPM [6, 5, 22, 13, 19]. Moreover, one may
lift the known connection between automated planning and proposi-
tional LTL [1, 9] to a first-order, data-aware setting, and use LTLMT

f

to address planning problems based on expressive theories.
The paper is structured as follows. We introduce the relevant back-

ground in Section 2. Then, Section 3 provides the new pruning rule
for LTLMT

f and proves that it maintains soundness and completeness.
Section 4 defines the condition of finite memory, proves the termina-
tion of the tableau for formulas satisfying such condition, and iden-
tifies a number of decidable fragments of LTLMT

f . Finally, Section 5
concludes discussing related work and future directions. For reasons
of space, some proofs were moved to an extended version [26].

2 Background
We consider a given first-order multi-sorted signature Σ =
⟨S,P,F ,V,W⟩, where S is a set of sorts; P is a set of predicate
and F a set of function symbols; V is a finite, non-empty set of data
variables; and W is a set of variables disjoint from V that will be
used for quantification; all variables are associated with a sort in S.
Each predicate and function symbol is supposed to have a type taking
sorts from S; constant symbols are represented by zero-ary function
symbols. We assume that Σ contains equality predicates for all sorts.

Then, Σ-terms t are built according to the following grammar:

t := v | w | f(t1, . . . , tk) | ⃝ v | ⃝∼ v

where v ∈ V , w ∈ W , f ∈ F has arity k, and each ti is a term
of appropriate sort. Intuitively, ⃝ and ⃝∼ are the next and weak next
operators, that represent the value of a variable v ∈ V in the next
state (see the semantics below). An atom is of the form p(t1, . . . , tk),
where p ∈ P is a predicate symbol of arity k, and ti are terms of
appropriate sort. Then, LTLMT

f formulas are defined as follows:

λ := a | ¬a | λ1 ∧ λ2 | λ1 ∨ λ2 | ∃w. λ | ∀w. λ
ϕ := ⊤ | λ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Xϕ | X̃ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2

where a is an atom and w∈W . Formulas λ as above are called first-
order formulas. We call ϕ a state formula if all its free variables are in
V . Σ-formulas without free variables are Σ-sentences, and a set of Σ-
sentences is a Σ-theory T . Note the difference between the next (⃝)
and weak next (⃝∼) operators, acting on variables, and the tomorrow
(X), and weak tomorrow (X̃) temporal operators, acting on formulas.

To define the semantics of first-order formulas, we use the stan-
dard notion of a Σ-structure M , which associates each sort s ∈ S
with a domain sM , and each predicate p ∈ P and function symbol
f ∈ F with a suitable interpretation pM and fM . The equality pred-
icates have the usual interpretation given by the identity relation. The
carrier ofM , i.e., the union of all domains of sorts in S, is denoted by
|M |. A function α : V → |M | is a state variable assignment with re-
spect toM , while a function γ : W → |M | is an environment, where
we assume in both cases that all variables are mapped to elements
of their domain. We write γ[u 7→ e] for the environment γ extended
with a binding from u to e. A run is a pair σ = (M, ⟨α0, . . . , αn−1⟩)
of a Σ-structureM and a sequence of state variable assignments with
respect to M , and |σ| = n is its length.

Example 1. Let V consist of variables x and y of sort int, and
M be the (unique) model of the theory of linear arithmetic over
the integers (LIA). Then, e.g., (M,α) is a run of length 3, for
α = ⟨{x 7→ −1, y 7→ 0}, {x 7→ 0, y 7→ 1}, {x 7→ 2, y 7→ 2}⟩.

For such a run σ, some i with 0 ≤ i < n, and an environment γ,
a term t is well-defined if i < n−1, or t does not contain subterms
of the form ⃝ v or ⃝∼ v. In this case, the evaluation of the term t is
denoted JtKiσ,γ , and defined as follows:

JvKiσ,γ = αi(v) J⃝ vKiσ,γ = J⃝∼ vKiσ,γ = αi+1(v)
JwKiσ,γ = γ(w) Jf(t1, . . . , tk)Kiσ,γ = fM (Jt1Kiσ,γ , . . . , JtkKiσ,γ)

where v ∈V and w∈W . Satisfaction of a first-order formula λ with
respect to an environment γ in the run σ with i < |σ|, denoted σ |=i

γ

λ, is defined as follows:

σ |=i
γp(t1, . . . , tk) if t1, . . . , tk are well-defined and

(Jt1Kiσ,γ , . . . , JtkKiσ,γ) ∈ pM , or
if some t1, . . . , tk is not well-defined and
t1, . . . , tk contain ⃝∼ but do not contain ⃝

σ |=i
γ¬p(t1, . . . , tk) if σ ̸|=i

γ p(t1, . . . , tk)

σ |=i
γλ1 ∧ λ2 if σ |=i

γ λ1 and σ |=i
γ λ2

σ |=i
γλ1 ∨ λ2 if σ |=i

γ λ1 or σ |=i
γ λ2

σ |=i
γ∃w. λ if σ |=i

γ[w 7→e] λ for some e ∈ sM

σ |=i
γ∀w. λ if σ |=i

γ[w 7→e] λ for all e ∈ sM

where w is assumed to have sort s. Satisfaction with respect to σ is
extended to a general LTLMT

f formula ϕ as follows:

σ |=i λ if σ |=i
∅ λ

σ |=i ϕ1 ∧ ϕ2 if σ |=i ϕ1 and σ |=i ϕ2

σ |=i ϕ1 ∨ ϕ2 if σ |=i ϕ1 or σ |=i ϕ2

σ |=i Xϕ if i < |σ|−1 and σ |=i+1 ϕ
σ |=i X̃ϕ if i = |σ|−1 or σ |=i+1 ϕ
σ |=i ϕ1 U ϕ2 if there is some j, i ≤ j < |σ| such that σ |=j ϕ2

and σ |=k ϕ1 for all i ≤ k < j
σ |=i ϕ1 R ϕ2 if either σ |=j ϕ2 for all i ≤ j < |σ|, or there is

some j, i ≤ j < |σ| such that σ |=j ϕ1

and σ |=k ϕ2 for all i ≤ k ≤ j

Finally, σ satisfies ϕ, denoted by σ |= ϕ, if σ |=0 ϕ holds. We use
the usual shorthands Fϕ ≡ (⊤ U ϕ) and Gϕ ≡ (⊥ R ϕ), where ⊤ ≡
a ∨ ¬a for any atom a and ⊥ ≡ ¬⊤. For instance, the run in Ex. 1
satisfies (y≥x) U (x= y) and G(⃝∼ x>x), but not G(⃝x>x) as
no first-order formula with ⃝ holds in the last instant.

Let V⃝ = {⃝ v | v ∈ V} be the set of all the next variables of V ,
and similarly for V⃝∼. A first-order formula ϕ without V⃝ ∪ V⃝∼

is satisfied by some Σ-structure M and state variable assignment
α : V → |M |, denoted M,α |= ϕ, if (M, ⟨α⟩) |= ϕ, which cor-
responds to the usual notion of first-order satisfaction; if ϕ is a sen-
tence, we simply write M |= ϕ. For a Σ-structure M , we will write
M ∈ T to express that M is a model of T . A formula is called
T -satisfiable if it is satisfied by some σ = (M,α) with M ∈ T .
Moreover, two first-order formulas ϕ1 and ϕ2 are T -equivalent, de-
noted ϕ1 ≡T ϕ2, if ¬(ϕ1 ↔ ϕ2) is not T -satisfiable.

A Σ-theory T has quantifier elimination (QE) if for any Σ-formula
ϕ there is a quantifier-free formula ϕ′ that is T -equivalent to ϕ.

In the paper we will sometimes refer to common SMT theories [2]:
the theory of equality and uninterpreted functions for a given Σ
(EUF), linear arithmetics over rationals (LRA) and integers (LIA).

Tableau for LTLMT
f We now recall the one-pass tree-shaped

tableau for LTLMT
f presented in [24]. The closure of a formula ϕ,

denoted C (ϕ), is the smallest set of formulas that contains all sub-
formulas of ϕ, and, in addition, X(ϕ1Uϕ2) whenever ϕ1Uϕ2 ∈ C (ϕ)
and X̃(ψ1Rψ2) whenever ψ1Rψ2 ∈ C (ϕ). A tableau for an LTLMT

f

formula ϕ is a rooted tree in which each node u is labelled by a set
of formulas Γ(u) ⊆ C(ϕ), as follows. The root node u0 has label
Γ(u0) = {ϕ}, and every other node is the result of applying one of
a set of rules to its parent. If any is applicable, one of the expansion
rules, shown in Tab. 1, is applied.

rule ϕ ∈ Γ(u) Γ1(ϕ) Γ2(ϕ)

DISJUNCTION ψ ∨ χ {ψ} {χ}
CONJUNCTION ψ ∧ χ {ψ, χ}
UNTIL ψ U χ {χ} {ψ, X(ψ U χ)}
RELEASE ψ R χ {ψ, χ} {χ, X̃(ψ R χ)}

Table 1. Expansion rules for LTLMT
f tableau.

When applying a rule to a formula ϕ ∈ Γ(u) for a node u,
two children u1 and u2 of u are constructed, which are labeled
Γ(u) \ {ϕ} ∪ Γ1(ϕ) and Γ(u) \ {ϕ} ∪ Γ2(ϕ), respectively, with
the second child omitted if Γ2(ϕ) is empty. If no expansion rule is
applicable to a node u, the node is called poised. By definition of the
expansion rules, such a node can contain only atoms, or temporal for-
mulas rooted by X and X̃. Poised nodes represent a state in a possible
model for the formula. Then, time advances, from a poised node u,
by applying the STEP rule, which creates a child u′ of u such that:

STEP : Γ(u′) = {ψ | Xψ ∈ Γ(u) or X̃ψ ∈ Γ(u)}

However, the STEP rule is only applied if the branch is not ready to
be either accepted or rejected by one of two termination rules. These
rules are defined, for a branch u, via a first-order formula Ω(u) which
summarizes all constraints along the branch. The formula is defined
over the signature Σ′ = (S,P ′,F ,Vω,W), where P ′ = P ∪ {ℓ}
for some fresh ℓ, and Vω =

⋃
i∈N V

i where V i = {vi | v ∈ V}
are indexed versions of the variables in V . We write V for the list of
variables (v1, . . . , vk), ordering the variables in V in some arbitrary
but fixed way; and similarly, V

i
for (vi1, . . . , vik).

The stepped version t(i) of an arbitrary term t is defined as follows:
1.w(i) = w for allw ∈ W; 2. v(i) = vi for all v ∈ V; 3. (⃝x)(i) =

(⃝∼ x)(i) = xi+1; and 4. f(t1, . . . , tn)(i) = f(t
(i)
1 , . . . , t

(i)
n). We

extend the notion to formulas, and set ψ(i) to the formula obtained
from ψ by replacing each term t in ψ by t(i). The role of ℓ is to
denote the last position of a run. Given a first-order formula ϕ, the
formula L(ϕ) is obtained by replacing all atoms A containing any
term from V⃝ by ℓ ∧ A, and all atoms B containing any term from
V⃝∼ (but not from V⃝) by ℓ→ B.

More generally, we define Ω for sequences of constraints. Let
C = ⟨C0, . . . , Cm−1⟩ be a sequence of first-order formulas with
free variables V ∪ V⃝ ∪ V⃝∼. Then Ω(C) is defined as

Ω(C) =

m−2∧
i=0

C
(i)
i ∧ L(Cm−1)

(m−1)

Notice that, according to the definition of ψ(i), only variables from
V are stepped, whereas the ℓ atom is left unchanged. For a branch u
with poised nodes π = ⟨π0, . . . , πm−1⟩ and F (πi) the conjunction
of first-order formulas in πi, we set Ω(u) = Ω(⟨F (π0), . . . , F (πm−
1)⟩).1 Intuitively, Ω(u) serves the purpose to capture a candidate
model along the branch u.
1 We use a slightly modified but equivalent variant of the definition of Ω from

[24], applying the L operator only to the last instant. This allows us to use
a single constant ℓ, which will simplify the definition of the PRUNE rule.

{ψ}

{x< 0, y=1, ψ′}

{x = y}
✗

{x< 0, y=1,⃝ y >y,⃝x≤x,Xψ′}

{ψ′}

{x = y}
✗

{⃝ y >y,⃝x≤x,Xψ′}

{ψ′}

{x = y}
✗

{⃝ y >y,⃝x≤x,Xψ′}

Figure 1. Example tableau for the LTLMT
f formulaψ of Ex. 2. Poised nodes

are underlined, and nodes marked ✗ are rejected.

Given Ω(u), the termination rules are defined as follows. The
EMPTY rule is responsible for acceptance:

EMPTY : If Γ(πm−1) does not contain formulas rooted by X
and Ω(u) ∧ ¬ℓ is satisfiable, the branch is accepted.

Whereas the CONTRADICTION rule is responsible for rejection:

CONTRADICTION : If Ω(u) is T ∪ EUF-unsatisfiable, the
branch u is rejected.

From [24], we can state the soundness and completeness of the
tableau for LTLMT

f so defined.

Proposition 1 ([24]). A tableau for an LTLMT
f formula ϕ contains

an accepted branch if and only if the formula is satisfiable.

The construction of the tableau for an arbitrary formula is not
guaranteed to terminate, which is to be expected since LTLMT

f is in
general undecidable. However, since accepted branches are finite, if
the formula is satisfiable, a breadth-first construction of the tree will
surely find an accepted branch. Hence, for decidable theories, this
tableau provides a semi-decision procedure for LTLMT

f satisfiability.

Proposition 2 ([24]). LTLMT
f satisfiability is semi-decidable.

Example 2. Consider the following formula:

ψ := (x< 0 ∧ y=1) ∧ ((⃝ y >y ∧⃝x≤x) U x = y)

interpreted over LRA. A partial tableau for ψ is shown in Fig. 1,
where ψ′ := (⃝ y >y ∧⃝x≤x) U x = y. Note that ψ is unsatis-
fiable, but the CONTRADICTION rule is not sufficient to conclude
that, as the right-most branch is going to expand forever.

3 A new pruning rule for the LTLMT
f tableau

As discussed in Ex. 2, the right-most branch of Fig. 1 is the proto-
typical example of a branch that expands forever because of some
unfulfillable request that is postponed forever without ever causing
a local contradiction. In Reynolds’ tree-shaped tableau for proposi-
tional LTL, this case is handled by an ad-hoc PRUNE rule, which
takes care of rejecting such branches [37]. Here, we define a simi-
lar rule for LTLMT

f . To this end, we use a quantified variant of the
formula Ω(C), for a sequence of first-order formulas C.

Definition 1 (History constraints). The history constraint of a se-
quence of first-order formulas C, denoted h(C), is defined as:

h(C) =

{
⊤ if C is empty
(∃V 0 . . . V m−1. Ω(C))[V

m
/ V] otherwise

That is, all stepped variables are existentially quantified except
for the last ones, which are renamed to V , so that h(C) is a for-
mula with free variables V . For a branch u with poised nodes
π = ⟨π0, . . . , πm−1⟩, let h(π) = h(⟨F (π0), . . . , F (πm−1)⟩). Intu-
itively, the history constraint of a branch u summarises all constraints
accumulated along the branch, just like Ω, but by existentially quan-
tifying all variables except those in the last instant, it expresses the
effect of the accumulated constraints (the history) on the variables
V . If the theory under consideration has quantifier elimination (QE),
history constraints are always equivalent to quantifier-free formulas.

Example 3. Let ⟨π0, π1, π2⟩ be the poised nodes in the right-most
branch of the tableau in Fig. 1, and denote as π≤i, for 0 ≤ i ≤ 2,
the branches up to these nodes. Then, we have:

h(π≤0) = (∃x0 y0. x0< 0 ∧ y0 =1 ∧ y >y0 ∧ x≤x0 ∧ ℓ)
≡LRA x < 0 ∧ y > 1 ∧ ℓ

h(π≤1) = ∃x1 y1 x0 y0. x0< 0 ∧ y0 =1 ∧ y1>y0 ∧ x1 ≤x0 ∧
y >y1 ∧ x≤x1 ∧ ℓ

≡LRA x < 0 ∧ y > 1 ∧ ℓ
h(π≤2) ≡LRA ∃x2 y2. x2 < 0 ∧ y2 > 1 ∧ y >y2 ∧ x≤x2 ∧ ℓ

≡LRA x < 0 ∧ y > 1 ∧ ℓ

Here the equivalences are obtained with quantifier elimination in
LRA, so all history constraints are LRA-equivalent. This reflects the
fact that what can be said about x and y after the respective nodes is
always the same: x is negative, and y is greater than 1.

Intuitively, if the labels and history constraints of nodes repeat, no
progress is made on this branch. This motivates the next definition.

Given a tableau branch u with poised nodes π = ⟨π0, . . . , πm−1⟩:

PRUNE : If Γ(πi) = Γ(πm−1) for some i<m and
h(π) |=T h(π≤i) then u is rejected.

Testing whether the PRUNE rule applies requires to check entail-
ment in the underlying theory T . If T is decidable, this is always
possible (e.g., if T is LIA or LRA). However, in Sec. 4 we show that
even for theories where this is not feasible in general, PRUNE can be
applied in a number of special cases. Moreover, note that the entail-
ment condition of the PRUNE rule is equivalent to saying that the set
of states described by the formula h(π) (which represents the history
effect at the end of π) is contained in the set of states described by
the formula h(π≤i) (representing the effect up to instant i).

Finally, note that even though there is an apparent overlap be-
tween the definitions of the EMPTY and PRUNE rules, the two can
never be applicable together on the same node, because in this case,
EMPTY would have triggered before (on the repeated node identi-
fied by PRUNE), and the branch would have been already accepted.

The rightmost branch in Fig. 1 is rejected by the PRUNE rule:
for π1 and π2 the last two poised nodes on the branch, Γ(π1) =
Γ(π2) holds and, as shown in Ex. 3, h(π≤1) and h(π≤2) are LRA-
equivalent. A further example of an application of the rule follows.

Example 4. Consider the following unsatisfiable formula inter-
preted over EUF, for a unary predicate p:

ψ := F(p(⃝x) ∧ X(¬p(x)))

The corresponding tableau is shown in Fig. 2. Let u be the right-
most branch with poised nodes π = ⟨π0, π1⟩. We have Γ(π0) =
Γ(π1), and h(π≤0) = h(π≤1) = ⊤. Thus the PRUNE rule applies,
and u can be rejected.

{ψ}

{p(⃝x) ∧ X(¬p(x))}

{p(⃝x),X(¬p(x))}

{¬p(x)}
✗

{Xψ}

{ψ}

{p(⃝x) ∧ X(¬p(x))}

{p(⃝x),X(¬p(x))}

{¬p(x)}
✗

{Xψ}

Figure 2. Example of application of the PRUNE rule from Ex. 4.

Since the PRUNE rule can only reject (but not accept) branches,
it may only affect completeness, but not soundness. As we prove in
the remainder of this section, completeness of the tableau calculus of
[24] is indeed preserved when augmented with the PRUNE rule.

Completeness Here, we extend the completeness result of [24, 25]
to account for the additional PRUNE rule. We start by defining a pre-
model, an abstract structure summarising the important aspects of a
state sequence in a tableau branch.

Definition 2 (Atom). An atom ∆ for an LTLMT
f formula ϕ is a set

∆ ⊆ C (ϕ) such that:
1. the conjunction of all first-order formulas in ∆ is T -satisfiable;
2. for all ψ ∈ ∆ to which a rule from Tab. 1 applies, either Γ1 ⊆ ∆,

or Γ2 ̸= ∅ and Γ2 ⊆ ∆; and
3. ∆ is closed under logical deduction as far as C (ϕ) is concerned.

Definition 3. A pre-model for ϕ is a sequence of atoms ∆ =
⟨∆0, . . . ,∆n−1⟩ such that ϕ ∈ ∆0, and for all i, 0 ≤ i < n:
1. ∆n−1 does not contain any p(t1, . . . , tk) where V⃝ occurs,
2. if Xϕ′ ∈ ∆i then i < n− 1 and ϕ′ ∈ ∆i+1,
3. if X̃ϕ′ ∈ ∆i then i = n− 1 or ϕ′ ∈ ∆i+1,
4. if ϕ1 Uϕ2 ∈ ∆i then there is some i ≤ j < n such that ϕ2 ∈ ∆j

and ϕ1 ∈ ∆k for all i ≤ k < j,
5. if ϕ1 R ϕ2 ∈ ∆i then either ϕ2 ∈ ∆k for all i ≤ k < n, or

there is some i ≤ j < n such that ϕ1 ∈ ∆j and ϕ2 ∈ ∆k for all
i ≤ k ≤ j, and

6. all ∆i are minimal with respect to set inclusion.

Let F (∆) be the conjunction of all first-order formulas in an atom
∆. Given a pre-model ∆ = ⟨∆0, . . . ,∆n−1⟩, we say that ∆ is sat-
isfiable if Ω(⟨F (∆0), . . . , F (∆n−1)⟩) ∧ ¬ℓ is T -satisfiable.

Following [24, 25], one can show that from any pre-model for an
LTLMT

f formula ϕ one can obtain a model of ϕ, and vice versa, any
model of ϕ can be represented by a pre-model:

Proposition 3 ([24, 25]). An LTLMT
f formula ϕ is satisfiable if and

only if it has a satisfiable pre-model.

There is a precise connection between pre-models of a formula
and branches of the tableau. In particular, the following extraction
lemma can be proved, as in [25, Lem. 2 in Appendix A].

For a node u in a tableau for ϕ, let the atom of u, denoted ∆(u),
be the set of all formulas in C(ϕ) that are entailed by Γ(u).

Proposition 4 ([24, 25]). If ∆= ⟨∆0, . . . ,∆n−1⟩ is a satisfiable
pre-model for ϕ, every complete tableau for ϕ has a branch with step
nodes π = ⟨π0, . . . , πn−1⟩ such that ∆(πi)=∆i for all 0≤ i<n.

To prove completeness, we have to show that if a formula ϕ
is satisfiable, there is an accepted branch. As ϕ is satisfiable, it

has a model, and by Prop. 3, there is also a satisfiable pre-model
∆ = ⟨∆0, . . . ,∆n−1⟩ for ϕ. Thus, by Prop. 4, there is a branch
π = ⟨π0, . . . , πn−1⟩ in the tableau such that ∆(πi) = ∆i for all
i, 0≤ i<n. It is easy to see that (a prefix of) π cannot be rejected
by the CONTRADICTION rule, as otherwise ∆ would not be a sat-
isfiable pre-model. However, it remains to show that π cannot be
rejected by the PRUNE rule. To this end, we first define a redundant
segment of a pre-model, i.e., a segment that can be safely removed
from a satisfiable pre-model to obtain another, shorter, satisfiable pre-
model. Then, we show that if there are no redundant segments, the
tableau branch extracted by Prop. 4 cannot be rejected by PRUNE.
To do so, we extend our notion of history constraints to pre-models
in a natural way, that is, given a pre-model ∆ = ⟨∆0, . . . ,∆n−1⟩,
we define h(∆) = h(⟨F (∆0), . . . , F (∆n−1)⟩).

Definition 4 (Redundant segment). Let ∆ = ⟨∆0, . . . ,∆n−1⟩ be a
pre-model for ψ and j < k < n. Then the subsequence ∆[j+1,k] is
redundant if ∆j = ∆k and h(∆≤k) |=T h(∆≤j).

Intuitively, a redundant segment can be removed from a pre-model
because it does no useful work towards the satisfaction of the for-
mula. To show this, we need an auxiliary result about history con-
straints. First, given two state variable assignments α and α′ we
define the combination α⊛α′ of them as a variable assignment
with domain V ∪ V⃝ ∪ V⃝∼ by setting (α⊛α′)(v) = α(v) and
(α⊛α′)(⃝ v) = (α⊛α′)(⃝∼ v) = α′(v) for all v ∈ V . That is,
α is used to interpret the current state variables, and α′ to interpret
the variables at the next state. Let C = ⟨C0, . . . , Cm−1⟩ be a se-
quence of first-order formulas with free variables V ∪ V⃝ ∪ V⃝∼.
Given a model M , and a sequence of state variable assignments
α = ⟨α0, . . . , αm⟩, we write M,α |= C if M,αi ⊛αi+1 |= Ci for
all 0 ≤ i < m−1, andM,αm−1 ⊛αm |= L(Cm−1). We then have
the following relationship between satisfying assignments for history
constraints, and sequences of assignments that satisfy each constraint
in the sequence individually (similar as [22, Lemma 3.5]):

Lemma 1. Let M be a Σ-structure and C = ⟨C0, . . . , Cm−1⟩ be a
sequence of first-order formulas with free variables V ∪ V⃝ ∪ V⃝∼,
for m ≥ 1.
(1) If M, ⟨α0, . . . αm⟩ |= C then M,αm |= h(C).
(2) If M,α |= h(C) then there is a sequence α = ⟨α0, . . . αm⟩

with αm = α such that M,α |= C.

Proof. Both items are shown by a straightforward induction proof
(see [26]).

Using Def. 4 and Lem. 1, we can now show that a satisfiable pre-
model remains satisfiable after removing a redundant segment.

Lemma 2. Let ∆ = ⟨∆1, . . . ,∆n−1⟩ be a satisfiable pre-model
for ψ with redundant segment ∆[j+1,k]. Then ∆

′
= ∆≤j∆>k is a

satisfiable pre-model as well.

Proof. See [26].

It is finally possible to prove the main completeness result.

Theorem 1 (Soundness and completeness). Given a LTLMT
f formula

ψ, the tableau for ψ augmented with the PRUNE rule has an ac-
cepted branch if and only if ψ is satisfiable.

Proof. As soundness is not affected by the PRUNE rule, we are only
concerned with completeness. Hence, suppose ϕ is satisfiable. By
Prop. 3 there is a satisfiable pre-model ∆ = ⟨∆0 . . . ,∆n−1⟩ for

ϕ. Without loss of generality, we can assume that ∆ is of minimal
length. By Prop. 4, the tableau for ϕ has a corresponding branch
u with poised nodes π = ⟨π0, . . . , πn−1⟩ such that ∆(πi) = ∆i

for all 0 ≤ i < n. As we mentioned, u cannot have been rejected
by the CONTRADICTION rule. Now, suppose by contradiction that
u has been rejected by the PRUNE rule. Then, there is a node πi

with Γ(πi) = Γ(πn) and h(π) |=T h(π≤i). But then, we have that
∆i = ∆n and h(∆) = h(∆≤i). That is, ∆[i,n] is a redundant seg-
ment. By Lem. 2, we can remove it, obtaining a shorter satisfiable
pre-model ∆<i. But this contradicts the assumption that ∆ was of
minimal length. Hence, u cannot have been rejected by PRUNE, and
is thus an accepted branch.

4 Decidable fragments

The new PRUNE rule is not capable of pruning all potentially infi-
nite branches in all possible case, since LTLMT

f is undecidable. How-
ever, we can identify a general sufficient condition for this to happen,
given that the underlying theory T is decidable (which we assume
throughout this section).

Definition 5 (Finite memory). Given an LTLMT
f formula ϕ, the his-

tory set of ϕ is the set of all the formulas h(∆≤i) for any pre-model
∆ of ϕ and any 0 ≤ i < |∆|. A formula ϕ has finite memory if its
history set is finite up to T -equivalence.

Theorem 2 (Termination). The tableau for an LTLMT
f formula with

finite memory is finite.

Proof. As accepted or rejected branches are finite by definition, we
are only concerned with branches that continue to expand forever
without triggering any termination rule. Suppose ϕ has finite mem-
ory but the tableau is infinite. Then there is at least one infinite branch
since the branching degree is finite; let π = ⟨π0, π1, . . .⟩ be the
poised nodes of this branch. For each prefix π≤i for i ≥ 0, one can
check that the sequence ∆ = ⟨∆(π0), . . . ,∆(πi)⟩ is a pre-model
for ϕ. Since ϕ has finite memory, its history set is finite up to T -
equivalence. As the possible labels of tableau nodes are also finite,
for some i large enough there exists a j < i such that Γ(πj) = Γ(πi)
and h(∆≤j) ≡T h(∆≤i), which means that h(π≤j) |=T h(π≤i).
Hence the PRUNE rule would apply to π≤i, contradicting the hy-
pothesis that no termination rule is triggering along π.

While Thm. 2 gives only a semantic and, in general, undecidable
condition for termination, we now show several concrete, effectively
identifiable classes of LTLMT

f formulas having finite memory. Indeed,
we use this approach to both re-prove and extend decidability condi-
tions previously obtained by ad-hoc methods in the literature, and to
show novel results for other relevant classes of formulas.

Before giving details, we summarise our decidability results. To
this end, let the set of iteration conditions of an LTLMT

f formula ϕ
consist of all literals that occur in ϕ1 for any subformula ϕ1 U ϕ2 of
ϕ, or in ψ2 for any subformula ψ1 R ψ2 of ϕ. We show decidability
for the following classes of LTLMT

f formulas:

(NCS) Formulae without cross-state comparisons, i.e., that have no
occurrences of V⃝∪V⃝∼, e.g., (x>y U x+y=2z)∧G(x+y>0);

(FX) Formulas where the only temporal operators are F, X, and X̃,
e.g., F(p(⃝x) ∧ X(¬p(x))) ∧ XF(r(x, y) ∨ r(⃝x, y));

(BL) Bounded lookback formulas, that generalize the above two by
requiring that constraint interaction via V⃝ and V⃝∼ is restricted
to finitely many configurations, e.g., p(x,⃝ y)U (⃝x = x+ y).

x

y

0 1 2 3 4 0 1 2 3 0 1 2 3

Figure 3. Dependency graphs for the formulas in Ex. 5 (left) and Ex. 6
(center and right). Equality edges are drawn dotted and other edges solid.

(MC) Formulas over LRA where all iteration conditions are
monotonicity constraints, i.e., variable-to-variable or variable-to-
constant comparisons. An example is the formula in Ex. 2.

(IPC) Formulas over LIA where all iteration conditions are integer
periodicity constraints, e.g., (y ≡3 x)U(x > 42)∧F(x+y = z).
Demri and d’Souza [17, 16] showed that satisfiability is decidable

for LTLMT
f over arithmetics where all literals are monotonicity or in-

teger periodicity constraints, but our results (MC) and (IPC) show
that is suffices to restrict the shape of iteration conditions respec-
tively. To the best of our knowledge, the result (FX) is novel; and
(BL) is novel as a decidability result for satisfiability, though a similar
result is known for model checking over LTLf with arithmetic [22],
and for the more restrictive condition of feedback freedom also sup-
porting the theory EUF [13]. In the remainder of this section, we
formally prove decidability for the five classes above.

We start with bounded lookback formulas. To formally define this
class of formulas, we use the structure of a dependency graph to
capture the dependencies between variables induced by a pre-model.

Definition 6 (Dependency graph). Let ∆ = ⟨∆0, . . . ,∆n−1⟩ be
a pre-model. Its dependency graph is DG(∆) = (V≤n, E=, E ̸=)
where V≤n = V 0 ∪ · · · ∪ V n is the set of nodes, and E= and E ̸=

are sets of two kinds of edges defined as follows.
Two variables x, y ∈ V≤n are dependent if there is a sequence

of variables z0, z1, . . . , zm ∈ W such that Ω(∆) contains a literal
ℓ0 mentioning x and z0, a literal ℓm mentioning zm and y, and, a
literal ℓi that mentions both zi, zi+1 for all 1 ≤ i < m. In this case:
• (x, y) ∈ E= if all the literals ℓi are equalities;
• (x, y) ∈ E ̸= if at least one ℓi is not an equality.

In other words, E= is the smallest equivalence relation on V≤n

that contains the transitive closure of all equality literals in Ω(∆),
while E ̸= captures connections by arbitrary other kinds of literals.
Moreover, let DG=(∆) = (V<n, E ̸=) be the graph obtained from
DG(∆) by collapsing all equality edges to an arbitrary element in
the equivalence relation induced by E=.

Definition 7. For k ≥ 0, an LTLMT
f formula ψ has k-bounded look-

back if for all pre-models ∆ of ψ, it holds that all acyclic paths in
DG=(∆) have length at most k.

A formula has bounded lookback (BL) if it has k-bounded look-
back for some k. The notion is an adaptation of a similar property
used in model checking [22]; and as shown there, it generalizes the
notion of feedback freedom [13] developed to verify database sys-
tems. Intuitively, bounded lookback expresses that in order to check
whether a run satisfies ϕ, it suffices to remember a bounded amount
of information from past states. The next examples illustrate the idea.

Example 5. For ϕ = p(x,⃝ y) U (⃝x = x + y) consider the
pre-model ∆ = ⟨∆0,∆0,∆0,∆1⟩ where ∆0 = {p(x,⃝ y),Xϕ}
and ∆1 = {⃝x = x+ y}. We have:

Ω(∆) = p(x0, y1) ∧ p(x1, y2) ∧ p(x2, y3) ∧ x4 = x3 + y3

Then, DG(∆) is pictured in Fig. 3 (left), representing all the connec-
tions between the variables x0, y0, . . . , x4, y4 implied by Ω(∆).

Since there are no equality literals, DG=(∆) coincides with
DG(∆). The longest acyclic path in DG=(∆) has length 3. Though
ϕ has infinitely many pre-models, it can be seen that in all their DGs,
acyclic paths have length ≤ 3, so ϕ has 3-bounded lookback.

Example 6. For the pre-model ∆ = ⟨∆0,∆1,∆2⟩ for ψ from Ex. 2,
where ∆0 = {ψ,ψ′, x< 0, y=1,⃝ y >y,⃝x≤x,Xψ′}, ∆1 =
{⃝ y >y,⃝x≤x, ψ′,Xψ′}, and ∆2 = ∆1 ∪ {x = y}, we have

Ω(∆) = x0< 0 ∧ y0 =1 ∧ y1>y0 ∧ x1 ≤x0 ∧ y2>y1
∧ x2 ≤x1 ∧ y3>y2 ∧ x3 ≤x2 ∧ x2 = y2

Fig. 3 shows DG(∆) (center) and DG=(∆) (right). The longest path
in DG=(∆) has length 4. However, ψ has infinitely many pre-models
∆m = ⟨∆0,∆1, . . . ,∆1,∆2⟩ with m repetitions of ∆1, for any
m ≥ 0, which have similar DG=’s with paths of length 2(m + 1).
So ψ does not have k-bounded lookback, for any k.

The proof of the following result recasts the approach from [22,
Thm. 5.10] for pre-models and satisfiability.

Theorem 3. Satisfiability of BL formulas is decidable.

Proof. Let ϕ have k-bounded lookback, and ∆ a pre-model of length
n for ϕ. The history constraint h(∆) encodes DG(∆). Let χ be
the formula obtained from h(∆) by removing all equalities between
variables and replacing each variable in V≤n by a representative
from its E=-equivalence class. Then χ ≡T h(∆) and χ encodes
DG=(∆). Since all acyclic paths in DG=(∆) have length at most k,
each variable in V n is connected in DG=(∆) to at most k variables
in V≤n. As χ encodes DG=(∆), χ is equivalent to a formula with at
most k · |V| quantified variables. All literals in χ are (renamed) first-
order formulas in ϕ. The number of formulas with a bounded number
of quantifiers and finite vocabulary is finite up to equivalence, so ψ
has finite memory, and by Thm. 2, the tableau is finite.

Note that for a given k and LTLMT
f formula ψ, it is decidable

whether ψ has k-bounded lookback, by checking whether none of
the finitely many (prefixes of) pre-models of length k + 1 has a path
in DG= of length more than k (cf., [22]). However, it is undecidable
whether there is some k such that ψ has k-bounded lookback.

Let a formula have cross-state comparisons if it contains variables
in V⃝ or V⃝∼. Note that for formulas without cross-state compar-
isons, dependency graphs have only edges from some xi to some
yi for the same i (i.e., vertical edges if pictured as in Fig. 3), so all
acyclic paths have length at most |V|. We hence obtain the following:

Corollary 1. Satisfiability of formulas without cross-state compar-
isons is decidable.

Now, let an LTLMT
f formula be an FX formula if its only temporal

operators are F, X, and X̃.

Theorem 4. Satisfiability of FX formulas is decidable.

Proof. Suppose an FX formula ϕ contains m literals, and let ∆ =
⟨∆0, . . . ,∆n−1⟩ be a pre-model for it. By the expansion rules of
the F, X, and X̃ operators, and the minimality of atoms, every literal
occurrence in ϕ corresponds to at most one occurrence in the pre-
model. Thus, ∆ contains at most m literals overall, and each path
in its dependency graph is upper-bounded by m · |V|, hence ϕ has
bounded lookback. The claim then follows from Thm. 3.

We next consider fragments of LTLMT
f over arithmetic theories.

Monotonicity constraints (MC) restrict linear arithmetics over the ra-
tionals, demanding all constraints to be of the form p ⊙ q where
p, q ∈ Q∪V ∪V⃝ ∪V⃝∼ and ⊙ ∈ {=, ̸=,≤, <}. An LTLMT

f for-
mula ϕ is an MC formula if all literals in ϕ are MCs, such as in the
formula from Ex. 2. Satisfiability of MC formulas is known to be de-
cidable [17, Cor. 5.5]. Here, we prove decidability for a larger class.

Definition 8 (Quasi-MC formulas). An LTLMT
f formula over the sig-

nature of LRA is quasi-MC if all its iteration conditions are MCs.

E.g., (⃝x>x ∧ ⃝ y >y) U (x+y > 10) is not an MC-, but a
quasi-MC formula. MC formulas are important in BPM, as they can
model decision tables [15]. To show decidability of quasi-MC formu-
las, we use the following fact about quantifier elimination [33, Sec.
5.4]: if ϕ is an LRA formula where all literals are MCs over a set of
constants K and variables X ∪{x}, then one can compute a formula
ϕ′ ≡LRA ∃x. ϕ such that all literals in ϕ′ are MCs over constants K
and variables X; e.g., using a Fourier-Motzkin procedure.

Theorem 5. Satisfiability of quasi-MC formulas is decidable.

Proof. Let K be the set of constants, I the set of iteration conditions,
A the set of all first-order formulas in a quasi-MC formula ϕ, and m
the number of occurrences of formulas of A in ϕ. For a pre-model
∆ = ⟨∆0, . . . ,∆n−1⟩, let J = {i1, . . . , ik} ⊆ {0, . . . , n−1} be
all indices such that F (∆ij) contains a formula in A \ I . W.l.o.g.,
assume that n − 1 ∈ J ; otherwise the reasoning is similar. Note
that k ≤ m since every occurrence of a first-order formula in ϕ
that is not an iteration condition can occur in at most one atom in a
pre-model. Now, Ω(∆) has free variables V≤n = V 0 ∪ . . . V n; let
X ⊆ V≤n be the set of variables occurring in {F (∆j)

(j) | j ∈ J},
and Y = V≤n \X . Then we can write h(∆) as(
∃X.

(
∃Y.

∧
i∈N\J

C
(i)
i

)
∧

∧
i∈J\{m−1}

C
(i)
i ∧ L(Cm−1)

(m−1)

)
[V]

where Ci = F (∆i). By the QE property of MCs, the subformula
∃Y.

∧
i∈N\J C

(i)
i is LRA-equivalent to a first-order formula χ where

all literals are MCs over constants K and variables V ∪X . There are
only finitely many such χ up to equivalence, as there are only finitely
many MCs over a finite set of variables and constants. Moreover, the
number of possibilities for the sequence Ci1 , . . . , Cik is bounded by
22

m

since all theseCij must be conjunctions of subsets ofA \ I , and
k≤m. Thus, up to equivalence, there are finitely many possibilities
for h(∆), so the history set is finite.

Integer periodicity constraints (IPCs) restrict linear integer arith-
metic (LIA) and are, e.g., used in calendar formalisms [16]. Precisely,
IPC atoms have the form x = y or x⊙d for ⊙ ∈ {=, ̸=, <,>,≡k},
or x ≡k y + d, for variables x, y with domain Z and k, d ∈ N. An
LTLMT

f formula ϕ over LIA is an IPC formula if all first-order formu-
las in ϕ are IPCs, and a quasi-IPC formula if all iteration conditions
are IPCs. IPC formulas are known to be decidable [16, Thm. 3].

We extend this result to quasi-IPC formulas by using a quantifier
elimination property as for MCs: if ϕ is a first-order formula where
all literals are IPCs over a set of constants K and variables X ∪ {x},
then one can compute a formula ϕ′ ≡LIA ∃x. ϕ such that ϕ′ is a first-
order formula where all literals are IPCs over constants K and vari-
ablesX [16, Thm. 2]. Then, the following can be proven exactly like
Thm. 5, using the fact that there are only finitely many LIA formulas
where all literals are IPCs over finite sets of variables and constants:

Theorem 6. Satisfiability of quasi-IPC formulas is decidable.

5 Related work and conclusions

In this paper we considered the satisfiability problem for LTLMT
f , a

highly expressive extension of LTLf . In earlier work, a tableau sys-
tem for LTLMT

f was proposed that is, however, incomplete to show
unsatisfiability. In this paper, we proposed a pruning rule for this
tableau that we proved sound and complete. We show that the tableau
construction terminates whenever the LTLMT

f formula satisfies the se-
mantic property of finite memory, and use this abstract termination
condition to prove decidability for several concrete, checkable, and
relevant classes of formulas, extending results from the literature.

Given the limited expressivity of propositional LTL, several
extensions with richer background theories have been considered,
in particular (fragments of) arithmetic theories [17, 16, 13, 19]. The
extension of LTL with first-order theories is highly challenging,
as even the most basic verification tasks become undecidable [4].
A starting point for this work is the LTLMT

f tableau by Geatti et
al. [24], which provides a semi-decision procedure; but, lacking a
pruning rule, is rarely able to show unsatisfiability, and no decid-
ability results for fragments of LTLMT

f are given. However, some
decidability results for model checking and satisfiability (which
are equivalent in linear-time temporal logics) for LTL with more
specific theories are known. Demri and D’Souza [17] showed that
satisfiability of LTL with monotonicity constraints (MCs), over both
integers and rationals, is decidable in PSPACE, and the same holds
for LTL over integer periodicity constraints [16]. Our results for the
(MC) and (IPC) fragments strictly extend these decidability results,
since we only restrict iteration conditions of formulas. The picture
gets more diverse for branching-time temporal logics equipped with
similar arithmetic theories; in this case, satisfiability and model
checking do no longer coincide [11, 10, 23, 21]. Damaggio et
al. [13] considered LTL model checking for transition systems that
operate over databases and include arithmetic conditions, and proved
decidability if the system together with the LTL formula satisfies
the property of feedback freedom. For purely arithmetic transition
systems, feedback freedom was extended by Felli et al. to that of
bounded lookback [22]. Our decidability result for (BL) takes this
idea to arbitrary theories, and recasts it for the satisfiability problem,
thus strictly extending [13, 22]. We showed that in the context of
satisfiability, (BL) implies decidability of the (FX) fragment, which
has no counterpart in model checking. Deutsch et al. [19] proved
decidability of model checking for hierarchic transition systems
and a a variant of first-order LTL (HLTL-FO), but this logic is in
general incomparable to LTLMT

f . Our notion of history constraints is
inspired by the respective notions from [22, 13, 7], though we recast
it here for satisfiability and in the setting of a tableau system.

Tableau systems for LTL and extensions thereof have been exten-
sively considered [35, 39, 37, 29]. The tableau for LTLMT

f provided
in [24] is based on Reynolds’ one-pass and tree-shaped tableau for
LTL [37], whose PRUNE rule does not transfer directly to the first-
order case. Tableau calculi for first-order extensions of LTL have also
been proposed [32], but they are not parameterised over the underly-
ing theory, and the considered logic do not support ⃝ and ⃝∼ terms.

Several directions for future work can be considered. Follow-
ing the path taken by [24], an SMT encoding of our PRUNE rule
would allow for its implementation in the BLACK temporal reason-
ing framework [27]. Moreover, whether these results can be extended
to a version of LTLMT

f supporting time-varying relations is still open.
Finally, we want to study also other, related tasks such as branching-
time logics modulo theories, and LTLMT

f monitoring [20].

Acknowledgements
This work was partially funded by the UNIBZ project ADAPTERS,
and the PRIN MIUR project PINPOINT Prot. 2020FNEB27. Nicola
Gigante acknowledges the support of the PURPLE project, 1st Open
Call for Innovators of the AIPlan4EU H2020 project, a project
funded by EU Horizon 2020 research and innovation programme un-
der GA n. 101016442 (since 2021). Luca Geatti acknowledges the
support from the 2022 Italian INdAM-GNCS project “Elaborazione
del Linguaggio Naturale e Logica Temporale per la Formalizzazione
di Testi”, ref. no. CUP_E55F22000270001.

References
[1] Fahiem Bacchus and Froduald Kabanza, ‘Using temporal logics to ex-

press search control knowledge for planning’, Artif. Intell., 116(1-2),
123–191, (2000).

[2] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli, ‘Satisfiability modulo theories’, in Handbook of Satisfiability
- Second Edition, eds., Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, volume 336 of Frontiers in Artificial Intelligence and
Applications, 1267–1329, IOS Press, (2021).

[3] Diego Calvanese, Giuseppe de Giacomo, Marco Montali, and Fabio
Patrizi, ‘First-order µ-calculus over generic transition systems and ap-
plications to the situation calculus’, Inform. Comput., 259(3), 328–347,
(2018).

[4] Diego Calvanese, Giuseppe De Giacomo, Marco Montali, and
Fabio Patrizi, ‘Verification and monitoring for first-order LTL with
persistence-preserving quantification over finite and infinite traces’, in
Proc. 31st IJCAI, pp. 2553–2560, (2022).

[5] Diego Calvanese, Silvio Ghilardi, Alessandro Gianola, Marco Mon-
tali, and Andrey Rivkin, ‘Formal modeling and SMT-based parameter-
ized verification of data-aware BPMN’, in Proc. of BPM 2019, volume
11675 of LNCS, pp. 157–175, (2019).

[6] Diego Calvanese, Silvio Ghilardi, Alessandro Gianola, Marco Montali,
and Andrey Rivkin, ‘SMT-based verification of data-aware processes: a
model-theoretic approach’, Math. Struct. Comput. Sci., 30(3), 271–313,
(2020).

[7] Diego Calvanese, Silvio Ghilardi, Alessandro Gianola, Marco Montali,
and Andrey Rivkin, ‘Model completeness, uniform interpolants and su-
perposition calculus’, J. Autom. Reason., 65(7), 941–969, (2021).

[8] Diego Calvanese, Giuseppe De Giacomo, and Marco Montali, ‘Foun-
dations of data-aware process analysis: a database theory perspective’,
in Proc. of PODS 2013, pp. 1–12. ACM, (2013).

[9] Alberto Camacho, Jorge A. Baier, Christian J. Muise, and Sheila A.
McIlraith, ‘Finite LTL synthesis as planning’, in Proc. 28th ICAPS, pp.
29–38, (2018).

[10] C. Carapelle, A. Kartzow, and M. Lohrey, ‘Satisfiability of ECTL∗ with
constraints’, Journal of Computer and System Sciences, 82(5), 826–
855, (2016).

[11] Karlis Cerans, ‘Deciding properties of integral relational automata’, in
Proc. 21st ICALP, volume 820 of LNCS, pp. 35–46, (1994).

[12] Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri,
and Stefano Tonetta, ‘SMT-based satisfiability of first-order LTL with
event freezing functions and metric operators’, Inf. Comput., 272,
104502, (2020).

[13] Elio Damaggio, Alin Deutsch, and Victor Vianu, ‘Artifact systems with
data dependencies and arithmetic’, ACM Trans. Database Syst., 37(3),
22:1–22:36, (2012).

[14] Giuseppe De Giacomo and Moshe Y. Vardi, ‘Linear temporal logic and
linear dynamic logic on finite traces’, in Proc. 23rd IJCAI, pp. 854–860,
(2013).

[15] Massimiliano de Leoni, Paolo Felli, and Marco Montali, ‘Integrating
BPMN and DMN: modeling and analysis’, J. Data Semant., 10(1),
165–188, (2021).

[16] Stéphane Demri, ‘LTL over integer periodicity constraints’, Theor.
Comput. Sci., 360(1-3), 96–123, (2006).

[17] Stéphane Demri and Deepak D’Souza, ‘An automata-theoretic ap-
proach to constraint LTL’, Inform. Comput., 205(3), 380–415, (2007).

[18] Alin Deutsch, Yuliang Li, and Victor Vianu, ‘Verification of hierar-
chical artifact systems’, in Proc. of PODS 2016, pp. 179–194. ACM,
(2016).

[19] Alin Deutsch, Yuliang Li, and Victor Vianu, ‘Verification of hierarchi-
cal artifact systems’, ACM Trans. Database Syst., 44(3), 12:1–12:68,
(2019).

[20] Paolo Felli, Marco Montali, Fabio Patrizi, and Sarah Winkler, ‘Mon-
itoring arithmetic temporal properties on finite traces’, in Proc. 35th
AAAI, pp. 6346–6354, (2023).

[21] Paolo Felli, Marco Montali, and Sarah Winkler, ‘CTL* model checking
for data-aware dynamic systems with arithmetic’, in Proc. 11th IJCAR,
volume 13385, pp. 36–56, (2022).

[22] Paolo Felli, Marco Montali, and Sarah Winkler, ‘Linear-time verifi-
cation of data-aware dynamic systems with arithmetic’, in Proc. 34th
AAAI, pp. 5642–5650, (2022).

[23] Régis Gascon, ‘An automata-based approach for CTL∗ with con-
straints’, in Proc. INFINITY 2006, 2007 and 2008, volume 239, pp.
193–211, (2009).

[24] Luca Geatti, Alessandro Gianola, and Nicola Gigante, ‘Linear temporal
logic modulo theories over finite traces’, in Proc. 31st IJCAI, pp. 2641–
2647, (2022).

[25] Luca Geatti, Alessandro Gianola, and Nicola Gigante, ‘Linear tempo-
ral logic modulo theories over finite traces (extended version)’, CoRR,
abs/2204.13693, (2022).

[26] Luca Geatti, Alessandro Gianola, Nicola Gigante, and Sarah Winkler,
‘Decidable fragments of LTLf modulo theories (extended version)’,
CoRR, abs/2307.16840, (2023).

[27] Luca Geatti, Nicola Gigante, and Angelo Montanari, ‘A SAT-based en-
coding of the one-pass and tree-shaped tableau system for LTL’, in
Proc. 28th TABLEAUX, volume 11714 of LNCS, pp. 3–20, (2019).

[28] Luca Geatti, Nicola Gigante, Angelo Montanari, and Mark
Reynolds, ‘One-pass and tree-shaped tableau systems for TPTL
and TPTLb+Past’, Inform. Comput., 278, 104599, (2021).

[29] Luca Geatti, Nicola Gigante, Angelo Montanari, and Mark Reynolds,
‘One-pass and tree-shaped tableau systems for TPTL and TPTLb+Past’,
Inform. Comput., (2021). in press.

[30] Silvio Ghilardi, Alessandro Gianola, Marco Montali, and Andrey
Rivkin, ‘Petri net-based object-centric processes with read-only data’,
Inf. Syst., 107, 102011, (2022).

[31] Giuseppe De Giacomo, Riccardo De Masellis, Marco Grasso, Fab-
rizio Maria Maggi, and Marco Montali, ‘Monitoring business metacon-
straints based on LTL and LDL for finite traces’, in Proc. of BPM 2014,
volume 8659 of LNCS, pp. 1–17, (2014).

[32] Roman Kontchakov, Carsten Lutz, Frank Wolter, and Michael Za-
kharyaschev, ‘Temporalising tableaux’, Stud Logica, 76(1), 91–134,
(2004).

[33] Daniel Kroening and Ofer Strichman, Decision Procedures – An Algo-
rithmic Point of View, Second Edition, Springer, 2016.

[34] Jianwen Li, Geguang Pu, Yueling Zhang, Moshe Y. Vardi, and
Kristin Y. Rozier, ‘SAT-based explicit LTLf satisfiability checking’, Ar-
tif. Intell., 289, 103369, (2020).

[35] Orna Lichtenstein and Amir Pnueli, ‘Propositional Temporal Logics:
Decidability and Completeness’, Logic Journal of the IGPL, 8(1), 55–
85, (2000).

[36] Amir Pnueli, ‘The temporal logic of programs’, in 18th Annual Sympo-
sium on Foundations of Computer Science, pp. 46–57. IEEE Computer
Society, (1977).

[37] Mark Reynolds, ‘A New Rule for LTL Tableaux’, in Proc. of the 7th In-
ternational Symposium on Games, Automata, Logics and Formal Veri-
fication, volume 226 of EPTCS, pp. 287–301, (2016).

[38] Kristin Y. Rozier and Moshe Y. Vardi, ‘LTL satisfiability checking’, Int.
J. Softw. Tools Technol. Transf., 12(2), 123–137, (2010).

[39] S. Schwendimann, ‘A New One-Pass Tableau Calculus for PLTL’, in
Proc. 7th TABLEAUX, volume 1397 of LNCS, pp. 277–292, (1998).

A Proofs
Lemma 1. Let M be a Σ-structure and C = ⟨C0, . . . , Cm−1⟩ be a
sequence of first-order formulas with free variables V ∪ V⃝ ∪ V⃝∼,
for m ≥ 1.
(1) If M, ⟨α0, . . . αm⟩ |= C then M,αm |= h(C).
(2) If M,α |= h(C) then there is a sequence α = ⟨α0, . . . αm⟩

with αm = α such that M,α |= C.

Proof. Both items are by induction on m.
(1) If m = 1 and M, ⟨α0, α1⟩ |= ⟨C0⟩ then M,α0 ⊛α1 |=

L(C0), so after renaming and quantification,

M,α1 |= (∃V 0. L(C0)
(0))[V] = h(⟨C0⟩).

For the induction step, suppose C = ⟨C0, . . . , Cm⟩ and
M, ⟨α0, . . . αm+1⟩ |= C. Let M ′ be like M but such that M ′ |= ℓ.
For C

′
= ⟨C0, . . . , Cm−1⟩, we have M ′, ⟨α0, . . . αm⟩ |= C

′
. By

the induction hypothesis, M ′, αm |= h(C
′
). Since M ′ |= ℓ, it

also holds that M ′, αm |= (∃V 0 . . . V m−1.
∧m−1

i=0 C
(i)
i)[V], i.e.,

M ′ and αm satisfy the formula that is like h(C
′
) but where L

is not applied to Cm−1; call this fact (⋆). Let α′
m be the substi-

tution with domain V m such that α′
m(vm) = αm(v) and α′

m+1

have domain Vm+1 such that α′
m+1(v

m+1) = αm+1(v) for all
v ∈ V , so they are like αm and αm+1, respectively, but with do-
mains V m and V m+1. Since M, ⟨α0, . . . αm+1⟩ |= C, we have
M,αm ⊛αm+1 |= L(Cm), soM,α′

m∪α′
m+1 |= L(Cm)(m). From

(⋆) we have M,α′
m |= ∃V 0 . . . V m−1.

∧m−1
i=0 C

(i)
i (using M in-

stead of M ′, as ℓ is not involved). By combining this with the above,
we haveM,α′

m∪α′
m+1 |= ∃V 0 . . . V m−1.

∧m−1
i=0 C

(i)
i ∧L(Cm)m,

so M,α′
m+1 |= ∃V 0 . . . V m.

∧m−1
i=0 C

(i)
i ∧ L(Cm)m, hence by re-

naming variables, M,αm |= h(C).
(2) Let m = 1 and M,α |= h(⟨C0⟩), which means M,α |=

(∃V 0. L(C0))
(0)[V]. Let α′

1 have domain V 1 such that α′
1(v

1) =
α(v) for all v ∈ V . There must be an assignment α′

0 with domain V 0

such thatM,α′
0∪α′

1 |= L(C0)
(0), so forα0 with domain V such that

α′
0(v

0) = α0(v) for all v ∈ V , it holds that M,α0 ⊛α |= L(C0),
so M, ⟨α0, α⟩ |= ⟨C0⟩.

For the induction step, let C = ⟨C0, . . . , Cm⟩, C
′

=
⟨C0, . . . , Cm−1⟩, and suppose M,α |= h(C), so

M,α |= (∃V 0 . . . V m.

m−1∧
i=0

C
(i)
i ∧ L(Cm)m)[V]

Let α̂ have domain V m+1 such that α̂(vm+1) = α(v) for all
v ∈ V , so M, α̂ |= ∃V 0 . . . V m.

∧m−1
i=0 C

(i)
i ∧ L(Cm)m. Thus

there is an assignment α̂′ with domain V m such that M, α̂ ∪ α̂′ |=
∃V 0 . . . V m−1.

∧m−1
i=0 C

(i)
i ∧ L(Cm)m (⋆). For α′ with domain

V such that α̂′(vm) = α′(v) for all v ∈ V , it thus holds that
M,α′ |= ∃V 0 . . . V m−1.

∧m−1
i=0 C

(i)
i . Let M ′ be like M but such

that M ′ |= ℓ. We have M ′, α′ |= (∃V 0 . . . V m−1.
∧m−2

i=0 C
(i)
i ∧

L(Cm−1)
m−1)[V] = h(C

′
). By the induction hypothesis, there

is a sequence ⟨α0, . . . αm⟩ such that M ′, ⟨α0, . . . αm⟩ |= C
′

and
αm = α′. Since M ′ |= ℓ, by definition of L, it holds that
M,αi ⊛αi+1 |= Ci for all 0 ≤ i < m (where Cm−1 is not mod-
ified by L). From (⋆), we also have M,α′ ⊛α |= L(Cm), so for
α = ⟨α0, . . . αm, α⟩ we have M,α |= C.

Lemma 2. Let ∆ = ⟨∆1, . . . ,∆n−1⟩ be a satisfiable pre-model
for ψ with redundant segment ∆[j+1,k]. Then ∆

′
= ∆≤j∆>k is a

satisfiable pre-model as well.

Proof. First, we show that, ∆′ is still a pre-model for ϕ: Since ∆j =
∆k, for every Xψ ∈ ∆j it must hold that ψ ∈ ∆k+1; and for every
X̃ψ ∈ ∆j , there is nothing to show if k = n, or otherwise ψ ∈
∆k+1 must hold as well. If ψ1 U ψ2 ∈ ∆j then ψ1 U ψ2 ∈ ∆k, so
the eventuality must be fulfilled at a later point, and similarly for R.
Minimality with respect to set inclusion is clear.

It remains to show that ∆
′

is satisfiable. We abbreviate the first-
order formulas in ∆i by ϕi :=

∧
F (∆i) for all 0 ≤ i < n.

By assumption, ∆ is satisfiable, so Ω(⟨ϕ1, . . . , ϕn−1⟩) ∧ ¬ℓ is T -
satisfiable. Thus also h(∆) ∧ ¬ℓ is T -satisfiable, so there are a Σ-
structure M and a state variable assignment α such that M,α |=
h(∆) ∧ ¬ℓ (⋆). By Lem. 1 there is a sequence α = ⟨α0, . . . , αn⟩
such that αn = α and M,α |= ⟨ϕ1, . . . , ϕn⟩. Let M ′ be like M
except that M ′ |= ℓ. Then M ′, ⟨α0, . . . , αk⟩ |= ⟨ϕ1, . . . , ϕk⟩ ∧ ℓ.
By Lem. 1 it thus holds thatM ′, αk |= h(∆≤k). Since h(∆≤k) |=T
h(∆≤j), it holds that M ′, αk |= h(∆≤j).

Again by Lem. 1 there is a sequence α′ = ⟨α′
0, . . . , α

′
j⟩ such that

α′
j = αk and M ′, α′ |= ⟨ϕ0, . . . , ϕj⟩. Since M ′ |= ℓ, we have
M ′, αi ⊛αi+1 |= ϕi for all 0 ≤ i < j. With α′

j = αk, it fol-
lows that the combined sequence α′′ = ⟨α′

0, . . . , α
′
j−1, αk, . . . , αn⟩

satisfies M ′, α′′ |= ⟨ϕ1, . . . , ϕj−1, ϕk, . . . , ϕn⟩. Again by Lem. 1,
h(∆

′
) is T -satisfiable. Finally, M,αn |= h(∆′) ∧ ¬ℓ must hold

because M,αn−1 ⊛αn |= ϕn ∧ ¬ℓ follows from (⋆).

	Introduction
	Background
	A new pruning rule for the LTLfMT tableau
	Decidable fragments
	Related work and conclusions
	Proofs

