
Linear-Time Verification of Data-Aware Dynamic Systems with Arithmetic

Paolo Felli, Marco Montali, Sarah Winkler*

Free University of Bozen-Bolzano – Bolzano – Italy
{pfelli,montali,winkler}@inf.unibz.it

Abstract
Combined modeling and verification of dynamic systems and
the data they operate on has gained momentum in AI and
in several application domains. We investigate the expres-
sive yet concise framework of data-aware dynamic systems
(DDS), extending it with linear arithmetic, and provide the
following contributions. First, we introduce a new, semantic
property of “finite summary”, which guarantees the existence
of a faithful finite-state abstraction. We rely on this to show
that checking whether a witness exists for a linear-time, finite-
trace property is decidable for DDSs with finite summary.
Second, we demonstrate that several decidability conditions
studied in formal methods and database theory can be seen
as concrete, checkable instances of this property. This also
gives rise to new decidability results. Third, we show how the
abstract, uniform property of finite summary leads to modu-
larity results: a system enjoys finite summary if it can be par-
titioned appropriately into smaller systems that possess the
property. Our results allow us to analyze systems that were
out of reach in earlier approaches. Finally, we demonstrate
the feasibility of our approach in a prototype implementation.

1 Introduction
The analysis of complex dynamic systems is a core research
topic in AI. While process analysis has long focused on the
control-flow perspective, in recent years a multi-perspective
approach gained momentum, studying the interplay between
control flow and data (Reichert 2012; Calvanese, de Gia-
como, and Montali 2013; Calvanese et al. 2018; Deutsch
et al. 2018). Verification in this setting is challenging, as it
must deal with potentially infinitely many states.

This is aggravated in the presence of arithmetic, notwith-
standing that it is essential for practical applications
(Deutsch et al. 2018): model checking of transition sys-
tems operating over simple data with arithmetic constraints
is known to be undecidable, as it is easy to model a two-
counter system. However, restrictions on the transition sys-
tem have been shown to render certain verification tasks de-
cidable. In particular, decidability has been obtained by con-
fining the constraint language, as in the case of monotonic-
ity constraints (Demri and D’Souza 2007) (e.g. x ≤ y) and
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gap-order constraints (Mayr and Totzke 2016; Bozzelli and
Pinchinat 2014) (e.g. x− y ≥ 2), or by limiting the con-
trol flow, as in the case of feedback freedom (Damaggio,
Deutsch, and Vianu 2012).

In this work, we focus on the framework of data-aware dy-
namic systems (DDSs) (de Leoni, Felli, and Montali 2020),
an expressive yet concise model for process analysis, which
we enrich with linear arithmetic. We call the resulting sys-
tems DDSs with arithmetic (DDSAs), and study the verifica-
tion problem for the linear-time, finite-trace temporal logic
LTLf (de Giacomo and Vardi 2013) extended with arith-
metic constraints. The following is a motivating example.

Example 1.1. Consider the process of an auction at an
online market place. Its data variables are a timer d, the
offer o by the last bidder, identified by b, a threshold price t
for which the item can be sold immediately, and the sum s.

sold

init : [dw > 0 ∧ tw > 0]

bid : [0<bw ∧ ow >or]

check : [dr > 0]

dec : [dr − dw ≥ 1]

exp : [dr ≤ 0 ∧ br > 0]

sell now : [or >tr]

fee : [sw = or+10]

The timer d is initialized to a number of days, and t is fixed
(action init). Then, while the timer did not expire (check),
bids are taken (bid) or the timer may be decremented (dec).
The auction ends if the timer expires and a bid was set (exp),
or the offer exceeds t (sell now). Finally, fee sets s to the offer
plus an auction fee. We will use our approach to verify that
ψ = �(sold ∧ d> 0→ o> t) holds, i.e., if the auction ends
before the timer expires, the offer exceeds the threshold. The
meaning of the colors will be clarified later.

Our contribution is as follows. (1) First, we introduce the
novel property of finite summary, and show that the above
restrictions studied in the literature (i.e. (i) monotonicity
constraints, (ii) gap-order constraints, (iii) feedback free-
dom) are instances of this property. We further generalize
feedback freedom introducing a new, expressive property
called (iv) bounded lookback. (2) Second, we prove that fi-
nite summary guarantees the existence of a faithful, finite-
state abstraction for a DDSA by representing sets of states
as logical constraints. This is used to show that checking
existence of a witness for an LTLf property is decidable.
(3) Third, we illustrate a modularity result: if a DDSA B rep-



resents either the sequential, or parallel but variable-disjoint,
execution of DDSAs with finite summary (possibly accord-
ing to the different criteria (i)-(iv)), then also B enjoys this
property and is thus amenable to our verification technique.

To the best of our knowledge, LTLf model checking of
such combinations of (i) − (iv) is shown decidable for the
first time (and the result is new for (ii), (iv) individually).

To demonstrate feasibility, we implemented our approach
in the tool ada, which tests for finite summary using (i) −
(iv), computes finite-state abstractions, and handles LTLf
model checking using an SMT solver as backend.

Related Work. Verification of transition systems with arith-
metic constraints has been studied in many areas includ-
ing formal methods, database theory, and BPM. For mono-
tonicity constraint (MC) systems, LTL model checking was
proven decidable in (Demri and D’Souza 2007), even com-
paring variables multiple steps apart. An extended language
is studied in (Demri 2006). DDSAs with MCs are also con-
sidered in (Felli, de Leoni, and Montali 2019) from the per-
spective of a finite-run semantics, giving an explicit pro-
cedure to compute finite, faithful abstractions. For gap-
order constraint (GC) systems, reachability was shown de-
cidable (Bozga, Gı̂rlea, and Iosif 2009). Also the existen-
tial fragment of CTL∗ with GCs is decidable, while the uni-
versal one is not (Bozzelli and Pinchinat 2014). A similar
dichotomy was discovered for the EF and EG fragments
of CTL (Mayr and Totzke 2016). We here consider LTLf
model checking, a task suited to many applications (de Gi-
acomo and Vardi 2013): For DDSAs with a finite summary,
we prove decidability of our verification task, i.e., to check
existence of a witness for an LTLf formula with constraints.
Finite summary is based on the notion of history constraints
from (Damaggio, Deutsch, and Vianu 2012), and we show
that it generalizes their feedback freedom property, though
their constraints may refer to a read-only database, a feature
that we leave for future work. DDSAs generalize timed au-
tomata, and in fact our abstraction shares with the famous
region graph the representation of a “region” of reachable
states by a formula (Alur and Dill 1994). The finite sum-
mary property does not cover timed automata with multi-
ple clocks, whereas the one-clock-case is captured by MCs.
Abstracting reachable states by formulas is an approach that
was also pursued in (Barrett, Demri, and Deters 2013). How-
ever, our results are incomparable to both of these works.
Our method can be seen as a form of predicate abstraction,
subject to a long line of research (e.g., (Clarke et al. 2004;
Colón and Uribe 1998)); but in contrast to most works there,
our abstraction is strongly preserving, i.e., our verification
task is decidable.

Paper structure. In Sec. 2 we formalize DDSAs and our
verification language and task. In Sec. 3 we develop the no-
tion of finite summary and show how it yields finite state ab-
stractions. Sec. 4 is devoted to our verification technique. In
Sec. 5 we demonstrate four concrete classes implying finite
summary, and in Sec. 6 we present modularity results. Sec. 7
describes our tool ada and concludes with directions for fu-
ture work. All proofs and further examples can be found in
an extended version (Felli, Montali, and Winkler 2021).

2 DDSs with Arithmetic
In this section we fix our model and verification lan-
guage: we enrich data-aware dynamic systems (DDSs) from
(de Leoni, Felli, and Montali 2020) with linear arithmetic
constraints, and extend the linear-time verification language
correspondingly.
Model. We start by defining the set of arithmetic constraints
over a domain D, which may be Z, Q, or R:

Definition 2.1. A constraint c over a set V of variables is
defined by the following grammar, where k ∈ D and v ∈ V :
e := v | k | e+ e | e− e
c := e = e | e 6= e | e < e | e ≤ e | c ∧ c

The set of all constraints over domain D is denoted by CD.
E.g., x 6= 1, x < y− z, and x− y = 2 are constraints over
{x, y, z} for domain Z, Q, or R. From now on, V will be a
fixed, finite set of variables. Two disjoint copies V r and V w
of V , called the read and write variables, denote the vari-
able values before and after a transition, respectively. We
also write V for a vector that contains the variables V in an
arbitrary but fixed order, and V r and V w for V r and V w
ordered in the same way. Throughout this paper, by a for-
mula ϕ we mean a boolean formula whose atoms are either
propositional or constraints as in Def. 2.1. We are thus in
the realm of SMT with linear arithmetic, which is decidable
and admits quantifier elimination: if ϕ is a formula with free
variables X ∪ {y}, and atoms in CD (cf. Def. 2.1), there is
some ϕ′ with free variablesX that is equivalent to ∃y.ϕ, i.e.,
ϕ′≡∃y.ϕ (Presburger 1929). Here the relation ≡ denotes
logical equivalence. For a set C of constraints and a formula
ϕ, we sometimes write ϕ ∧ C for the formula ϕ ∧

∧
C.

A state variable assignment α is a total function α : V 7→
D; we say that α satisfies a constraint c over V , written α |=
c, if the evaluation of c under α is true in D.

Definition 2.2. A DDS with arithmetic (DDSA) is a labelled
transition system 〈B, b0,A, T, F, V, α0, guard〉, where:
• B is a finite set of states, with b0 ∈ B the initial one;
• A is a finite set of actions;
• T : B ×A 7→ B is a transition function;
• F ⊆ B is the set of final states;
• α0 is the initial state variable assignment; and
• guard : A 7→ CD specifies executability constraints on

actions over variables V r ∪ V w.

In Def. 2.2 we restrict to conjunctive guards: disjunction can
be captured by multiple transitions between the same states.
With this convention, the system in Ex. 1.1 can be trans-
formed into an equivalent DDSA, and Fig. 1 shows further
examples of DDSAs. Note that a guard simultaneously ex-
presses a condition on the read variables, and an update on
the written ones: for instance, vr < 7 requires the current
value of v to be less than 7, while vw−vr ≤ 7 demands that
the new value of v exceeds the current value by at most 7.

We denote a transition from state b to b′ by executing an
action a∈A as b a−→ b′. A configuration of B is a pair (b, α)
where b∈B and α is a state variable assignment.

A guard assignment β is a function β : V r∪V w 7→ D. As
defined next, an action a transforms a configuration (b, α)
into a new configuration (b′, α′) by changing state as defined



B1 1 2
a1 : [x

w>yr]

a2 : [y
w>xr]

B2 1 2 3
[xw > 0]

[yw>xr]
[yr ≤ xr + 7]

B3 1 2
[xw−yr ≥ 2]

[yw−yr ≥ 3]
B4 1 2 3

[sw = ar] [sw = sr+br]

[aw =0 ∧ bw =0]

[aw > 0] [bw > 0]

Figure 1: Simple DDSAs (with finite summary).

by action a, and updating the state variable assignment in
agreement with the action guard. In the new assignment α′,
variables that are not written keep their previous value as per
α, whereas written variables are updated according to the
guard. Let write(a) = {x | xw ∈ V w occurs in guard(a)}.
Definition 2.3. A DDSA B= 〈B, b0,A, T, F, V, α0, guard〉
admits a step from configuration (b, α) to (b′, α′) via action
a, denoted (b, α) a−→ (b′, α′), if b a−→ b′ and the guard assign-
ment β given by β(vr) = α(v) and β(vw) = α′(v) for all
v ∈ V satisfies the guard of a, i.e., β |= guard(a) holds.
A run of length n is a sequence of steps ρ : (b0, α0) a1−→
(b1, α1) a2−→ · · · an−−→ (bn, αn), and ρi refers to (bi, αi). Note
that a run always starts in the initial state (b0, α0).
Specification language. For a constraint set C over V and
DDSA B = 〈B, b0,A, T, F, V, α0, guard〉, let LBC be the
language defined by the following grammar:
c | b | ψ∧ψ | ψ∨ψ | 〈a〉ψ | 〈·〉ψ | ♦ψ | �ψ | ψ U ψ

where a∈A, c∈C, and b∈B. Note that LBC does not
support negation as we will also consider fragments where
decidability is lost if constraints can be negated. However,
if the set C is closed under negation,1 LBC can express an
arbitrary formula in negation normal form. We adapt LTLf
semantics (de Giacomo and Vardi 2013):
Definition 2.4. A run ρ of length n satisfies ψ ∈ LBC , de-
noted ρ |= ψ, iff ρ, 0 |= ψ holds, where for 0 ≤ i ≤ n:
ρ, i |= c iff ρi = (b, α) for some b and α |= c
ρ, i |= b iff ρi = (b, α) for some α
ρ, i |= ψ1 ∧ ψ2 iff ρ, i |= ψ1 and ρ, i |= ψ2

ρ, i |= ψ1 ∨ ψ2 iff ρ, i |= ψ1 or ρ, i |= ψ2

ρ, i |= 〈a〉ψ iff i < n, ∃β ρi a,β−−→ ρi+1 and ρ, i+1 |= ψ
ρ, i |= 〈·〉ψ iff i < n and ρ, i+1 |= ψ
ρ, i |= ♦ψ iff ρ, i |= ψ or (i < n and ρ, i+1 |= ♦ψ)
ρ, i |= �ψ iff ρ, i |= ψ and (i = n or ρ, i+1 |= �ψ)
ρ, i |= ψ1 U ψ2 iff ρ, i |= ψ2, or (i<n and both

ρ, i |= ψ1 and ρ, i+1 |= ψ1 U ψ2)
Verification problem. We use LBC to express properties
over the finite traces of a DDSA B. A run ρ is a witness for
ψ ∈ LBC if (i) ρ ends in a final state of B and (ii) ρ |= ψ.
Definition 2.5 (Verification task). Given a DDSAB andψ ∈
LBC , check whether there exists a witness ρ for ψ in B.
If C is closed under negation, one can model check ψ by
looking for a witness for ¬ψ, i.e., a counterexample.

Unsurprisingly, DDSAs can directly encode 2-counter
Minsky machines, making the verification task undecidable.

1Here a constraint set C is closed under negation if for all c∈C
there is some c′ ∈C such that c′ ≡ ¬c.

Remark 2.6. It is undecidable to check whether there exists
a witness for a property of the form♦b in a DDSA, for b ∈ B.

3 DDSAs with Finite Summary
Instead of taming undecidability of verification by directly
looking for decidable fragments, we introduce a seman-
tic property called finite summary, and show that DDSAs
with this property admit a faithful finite-state abstraction
that preserves all properties expressible in our verification
language. Throughout the section, we fix a DDSA B =
〈B, b0,A, T, F, V, α0, guard〉 and a finite constraint set C.
We first consider paths in B, called symbolic runs:
Definition 3.1. A symbolic run σ is a transition se-
quence b0 a1−→ b1

a2−→ · · · an−−→ bn where bi ∈B and ai ∈A;
it abstracts any run of the form (b0, α0) a1−→ (b1, α1) a2−→
· · · an−−→ (bn, αn) i.e., a run with the same state and action
sequence. The prefix of σ of i steps is denoted σ|i.
For instance, for the DDSA B1 in Fig. 1 the sequence 1 a1−→
2 a2−→ 1 is a symbolic run. In this section, we aim to construct
an abstract representation of the reachable configurations of
B, where we capture a set of configurations by a pair (b, ϕ)
of a system state b∈B and a formula ϕwith free variables V
that describes the current state of the data. Our aim is to find
a finite set of such pairs that covers all reachable configura-
tions while being precise enough to decide our verification
task. To that end, we next define the update function as a
uniform way to express how the current state, captured by a
formula ϕ, changes by executing an action.

First, we define the transition formula ∆a of action a as
∆a(V r, V w)=guard(a)∧

∧
v 6∈write(a) v

w = vr. Intuitively,
this formula states the conditions on variables before and af-
ter executing a: guard(a) must be true and the values of all
variables that are not written are propagated by inertia. Note
that ∆a has free variables V r and V w; for variable vectors
X and Y of the same length, let ∆a(X,Y ) be the formula
obtained from ∆a by replacing V r by X and V w by Y .
Definition 3.2. For a formula ϕwith free variables V and an
action a, let update(ϕ, a) = ∃U.ϕ(U) ∧ ∆a(U, V ), where
U is a variable vector of the same length as V such that U is
disjoint from V and variables in ϕ, to avoid variable capture.

For instance, for action a1 in DDSA B1 of Fig. 1, ∆a1 =
(xw >yr) ∧ (yw = yr); and for ϕ = (x> 0) ∧ (y >x) we
get update(ϕ, a1) = ∃x′ y′.(x′> 0)∧ (y′>x′)∧ (x>y′)∧
(y= y′). Using quantifier elimination, we get an equivalent,
quantifier-free formula, for instance (y > 0) ∧ (x>y).

A key notion for our approach are history constraints: for-
mulas that sum up constraints collected along symbolic runs,
possibly in combination with additional constraints that are
needed for verification (i.e., constraints that occur in the
property ψ to be checked). To express the latter, we con-
sider verification constraint sequences C over constraint set
C, i.e., sequences C = 〈C0, . . . , Cn〉 of sets Ci ⊆ C. A pre-
fix 〈C0, . . . , Cm〉 of C is denoted by C|m. Moreover, we
denote by Cα0 = {v=α0(v) | v ∈V } the set of initial con-
straints, to capture in a formula the initial assignment.
Definition 3.3. For a symbolic run σ : b0

a1−→ b1
a2−→

· · · an−−→ bn, and verification constraint sequence C =



〈C0, . . . , Cn〉, the history constraint h(σ,C) is inductively
defined by setting h(σ,C) =

∧
(Cα0 ∪ C0) if n= 0, and

h(σ,C) = update(h(σ|n−1,C|n−1), an) ∧ Cn if n > 0.

Informally, the history constraint of a symbolic run is a for-
mula that captures all variable constraints that must hold in
the last state, i.e., it is a summary of the symbolic run, taking
into account additional verification constraints C that will
become relevant in Sec. 4. Note that symbolic runs may in
fact feature a sequence of actions that is not executable due
to guard conditions. In these cases history constraints are un-
satisfiable. For simplicity, in what follows we do not rule out
these explicitly (as it does not affect our results), though it
is possible and in fact done in our implementation. We call
h(σ,C) a history constraint of B and C if σ is a symbolic run
of B and C is a constraint sequence over C. If no verification
constraints are needed, we write h(σ) for h(σ, 〈∅, . . . , ∅〉).
Example 3.4. For B1 in Fig. 1 with domain Q and α0(x) =
α0(y) = 0, let σk be the (unique) symbolic run of k steps,
e.g. σ2 : 1 a1−→ 2 a2−→ 1. We get the history constraints

h(σ0) = x=0 ∧ y=0 (ϕ0)

h(σ1) = ∃x0y0. x0 =0 ∧ y0 =0 ∧ x>y0 ∧ y= y0
≡ x> 0 ∧ y=0 (ϕ1)

h(σ2) = ∃x1y1x0y0. x0 =0 ∧ y0 =0 ∧ x1>y0 ∧
y1 = y0 ∧ y >x1 ∧ x=x1

≡ x> 0 ∧ y >x (ϕ2)

where x0, y0, x1, y1 are fresh variables. The equivalence
steps are obtained by simplification and quantifier elimina-
tion. In a similar way, we get for σ3 : 1 a1−→ 2 a2−→ 1 a1−→ 2
the constraint h(σ3) ≡ (y > 0)∧ (x>y), and for σ4 : 1 a1−→
2 a2−→ 1 a1−→ 2 a2−→ 1 we get h(σ4) ≡ (x> 0) ∧ (y >x). The
fact that h(σ2) and h(σ4) are equivalent reflects that σ2 and
σ4 are equivalent in our finite-state abstraction.

Next we relate history constraints and assignments in runs.

Lemma 3.5. For any symbolic run σ of length n and C =
〈C0, . . . , Cn〉, [t]h(σ,C) is satisfied by assignment α iff
there is a run (b0, α0) a1−→ · · · an−−→ (bn, αn) that is abstracted
by σ such that α = αn and αi |= Ci for all i, 0 ≤ i ≤ n.

This shows that history constraints faithfully summarize ac-
cumulated constraints in symbolic runs, and their satisfying
assignments correspond to the results of actual runs. Both di-
rections are proven by straightforward induction proofs. For
instance, Lem. 3.5 states that since the assignment α(x) =
9, α(y) = 7 satisfies h(σ3) in Ex. 3.4, there is a run ab-
stracted by σ3 ending with this assignment. This is true, e.g.,
for (1,

[
x=0
y=0

]
) a1−→ (2,

[
x=1
y=0

]
) a2−→ (1,

[
x=1
y=7

]
) a1−→ (2,

[
x=9
y=7

]
).

Our finite summary property will express that all (in-
finitely many) symbolic runs can be faithfully described by
a finite set of states (b, ϕ) of a system state b ∈ B and a
formula ϕ that summarizes accumulated constraints. To that
end, we first define a history set as a set of such states that
contains a representative for every history constraint:

Definition 3.6. A history set Φ for B, C is a set of pairs
(b, ϕ) of b∈B and a formula ϕ such that for every history
constraint h(σ,C) of B, C where σ has final state b, there is
a (b, ϕ)∈Φ with h(σ,C)≡ϕ and Φ contains no other pairs.

The next result turns out to be convenient in the sequel to
characterize history sets:

Lemma 3.7. Φ is a history set iff (1) for all C ⊆ C, there
is some (b0, ϕ0) ∈ Φ such that ϕ0 ≡

∧
(Cα0

∪ C), and
(2) for all (b, ϕ) ∈ Φ, b a−→ b′, and C ⊆ C, there is some
(b′, ϕ′) ∈ Φ such that ϕ′ ≡ update(ϕ, a) ∧ C.

We will show that some of the DDSA classes that we con-
sider in this paper admit a finite history set—systems with
monotonicity constraints and bounded lookback—and this
feature is sufficient to decide our verification problem. For
other systems (e.g., gap-constraint systems) it is not possi-
ble to find finite history sets. However, we will prove that
the verification problem is still decidable if the more liberal
property of finite summary holds. Basically, this property ex-
presses that there exists a suitable equivalence relation ∼
such that the quotient of a history set with respect ∼ is fi-
nite. Here, ∼ is considered suitable if it is preserved under
steps of B and implies equisatisfiability; for practicality we
also require decidability. These requirements are made for-
mal in the following definition.

Definition 3.8. A summary for (B, C) is a pair (Φ,∼) of a
history set Φ for B, C and equivalence relation ∼ s.t.
(1) ∼ contains ≡ on Φ and is decidable,
(2) for all (b, ϕ), (b, ψ) ∈ Φ such that ϕ ∼ ψ, (a) ϕ and ψ

are equisatisfiable, and (b) for all transitions b a−→ b′ and
C ⊆ C, [update(ϕ, a) ∧ C] ∼ [update(ψ, a) ∧ C].

We say that (B, C) has finite summary if it admits a summary
(Φ,∼) where ∼ has finitely many equivalence classes.

Here, [·] is a representative function for the given history set:
if for a pair (b, ψ) there is some (b, ϕ) ∈ Φ with ψ ≡ ϕ, we
can assume that [ψ] is such a formula ϕ. A formula equiva-
lent to update(ϕ, a) ∧ C exists in Φ because of Lem. 3.7.

Intuitively, a DDSA has finite summary if it admits a
finite-state abstraction that is expressive enough to account
for all possible evolutions of B and properties in C. We next
show that (B, C) admits a finite summary if it has a finite
history set, so one can pick ≡ as equivalence relation.

Lemma 3.9. If B and C admit a finite history set Φ then
(B, C) has finite summary (Φ,≡).

Proof. Def. 3.8 (1) follows from decidability of linear arith-
metic and finiteness of Φ. For Def. 3.8 (2), we have that
(a) ϕ≡ψ implies equisatisfiability, and (b) we can write
update(ϕ, a) ∧

∧
C = ∃U.ϕ(U) ∧ χ and update(ψ, a) ∧∧

C = ∃U.ψ(U) ∧ χ for some χ, and these two formulas
are clearly again equivalent as ϕ≡ψ.

Example 3.10. Continuing Ex. 3.4, it can be shown that
h(σ2i) ≡ ϕ2 and h(σ2i+1) ≡ ϕ3 for all i > 0. Thus the
set Φ = {(1, ϕ0), (2, ϕ1), (1, ϕ2), (2, ϕ3)} is a finite history
set, and by Lem. 3.9 the tuple (Φ,≡) is a finite summary for
(B1, ∅). It can be visualized in a constraint graph, as done
in (Felli, de Leoni, and Montali 2019):

1, ϕ0 2, ϕ1 1, ϕ2 2, ϕ3
a1 a2

a1

a2

We conclude this section with another example where the
history set is not finite but a finite summary can be found.



Example 3.11. Consider the DDSA B3, and let σk be the
symbolic run of k steps (there is only one). We have e.g.
h(σ1) ≡ (x− y≥ 2) ∧ (y= 0), and h(σ2) ≡ (x≥ 2) ∧
(y≥ 3). In general, we obtain h(σ2i) ≡ (x≥ 3i − 1) ∧
(y≥ 3i) and h(σ2i+1) ≡ (x− y≥ 2) ∧ (y≥ 3i) for all
i ≥ 1. Since h(σi) 6≡ h(σj) for i 6= j, the history set
Φ = {h(σi) | i ≥ 0} is not finite. However, in Sec. 5
(subsection on gap-order constraints) we will show that B3
admits a finite summary (Φ,∼K), where ∼K is the cut-
off equivalence relation that considers formulas equivalent
if they are syntactically equal after replacing all constants
larger than some bound K by K itself.

4 Checking the Existence of Witnesses
In order to express the requirements on a run of a DDSA B
to satisfy an LTLf formula ψ, we next define a nondetermin-
istic automaton (NFA)Nψ . Then we combineNψ with B in
a kind of product construction to check for the existence of
witnesses for ψ.

To get the NFA, we perform a similar preprocessing step
as in (de Leoni, Felli, and Montali 2020), and replace first
all occurrences of subformulas 〈a〉ψ′ in ψ by 〈·〉(a ∧ ψ′),
adding a new proposition symbol for each action. For a run ρ
of length n, we thus write ρ, i |= a if 0<i<n and ρ, i−1 |=
〈a〉>. This modification allows us to consider fewer cases in
the constructions and proofs below.

Technically, given ψ ∈ LBC we build the NFA Nψ =
(Q,Σ, %, q0, QF ), where: (i) the set Q of states is a set of
formulas (marked p. . .q); (ii) Σ = 2S is the alphabet, where
S = B ∪A∪C; (iii) % ⊆ Q×Σ×Q is the transition relation;
(iv) q0 ∈ Q is the initial state; (v) QF ⊆ Q is the set of fi-
nal states. Following (de Giacomo, de Masellis, and Montali
2014), we define % using an auxiliary function δ and a new
proposition λ that marks the last element of the trace. The
input of δ is a (marked) formula ψ ∈ LBC ∪ {>,⊥}, and its
output a set of tuples (pψ′q, ς) where ψ′ has the same type
as ψ and ς ∈ 2S∪{λ,¬λ}. For two sets of such tuples R1,
R2, and � either ∧ or ∨, let R1 � R2 = {(pψ1 � ψ2q, ς1 ∪
ς2) | (pψ1q, ς1)∈R1, (pψ2q, ς2)∈R2}, where we simplify
ψ1 � ψ2 if possible. The function δ is as follows:
δ(p>q) = {(p>q, ∅)} and δ(p⊥q) = {(p⊥q, ∅)}
δ(ppq) = {(p>q, {p}), (p⊥q, ∅)} if p ∈ C ∪B ∪ A
δ(pψ1 ∨ ψ2q) = δ(pψ1q) ∨ δ(pψ2q)
δ(pψ1 ∧ ψ2q) = δ(pψ1q) ∧ δ(pψ2q)
δ(p〈·〉ψq) = {(pψq, {¬λ}), (p⊥q, {λ})}
δ(p♦ψq) = δ(pψq) ∨ δ(p〈·〉♦ψq)
δ(p�ψq) = δ(pψq) ∧ (δ(p〈·〉�ψq) ∨ δλ)
δ(pψ1 U ψ2q) = δ(pψ2q) ∨ (δ(pψ1q) ∧ δ(p〈·〉(ψ1 U ψ2)q))

where δλ abbreviates {(p>q, {λ}), (p⊥q, {¬λ})}. While
the symbol λ is needed for the construction, we can omit
it from the NFA, and define Nψ as follows:

Definition 4.1. Given a formula ψ ∈LBC , let the
NFA Nψ = (Q,Σ, %, q0, {qf , qe}) be given by q0 = pψq,
qf = p>q and qe is an additional final state, and Q, % are
the smallest sets such that q0, qf , qe ∈ Q and whenever
q ∈ Q \ {qe} and (q′, ς) ∈ δ(q) such that {λ,¬λ} 6⊆ ς
then q′ ∈ Q and

(i) if λ 6∈ ς then (q, ς \ {λ,¬λ}, q′) ∈ %, and

(ii) if λ ∈ ς and q′ = p>q then (q, ς \ {λ,¬λ}, qe) ∈ %.

This construction is similar to the one by (de Giacomo, de
Masellis, and Montali 2014), but reflects that our verification
language does not include negation. In fact it can be seen
as a relaxation, in that δ(ppq) contains (⊥, ∅) rather than
(⊥, {¬p}), for any atom p. In this way, Nψ cannot explic-
itly require atoms to be false; instead, the transition labels
intuitively state minimal requirements for ψ to hold.

Example 4.2. Consider the formula ψ = ♦c where
c is the constraint c = (y > 5). By the definition of
δ, we then have δ(p♦cq) = δ(pcq) ∨ δ(p〈·〉♦cq) =
{(p>q, {c}), (p⊥q, ∅)} ∨ {(p♦cq, {¬λ}), (p⊥q, {λ})} =
{(p>q, {c,¬λ}), (p>q, {c, λ}), (p♦cq, {¬λ}), (p⊥q, {λ})},
so the automaton Nψ is as follows:

pψqp⊥q p>q
{c}∅ ∅∅

∅

Due to our relaxation, the self-loop on pψq is labeled ∅
rather than {¬c}, but nonetheless Nψ works as expected: if
c is true an accepting path exists, and if c is false no further
possibilities arise.

To express correctness of Nψ , we need some notions of
consistency to express that a word w and a symbolic run are
not contradictory with respect to actions and states. First, we
call a symbol ς ∈Σ consistent with transition b a−→ b′ if ς is
disjoint from A\{a} and B \ {b′}, namely if it contains no
action symbol other than a nor state symbol other than b′.
Let constr(ς) = ς ∩ C.

Definition 4.3. A word w = ς0ς1 · · · ςn ∈ Σ∗ is consistent
with (a) a symbolic run σ : b0

a1−→ b2
a2−→ · · · an−−→ bn if ς0 is

disjoint from B \ {b0}, and ςi is consistent with bi−1 ai−→ bi
for 0<i≤n (b) a run ρ if it is consistent with the abstraction
σ of ρ and αi satisfies

∧
constr(ςi), where ρi = (bi, αi).

These notions allow us to express correctness of Nψ:

Lemma 4.4. Nψ accepts a word that is consistent with a run
ρ iff ρ |= ψ.

Product construction. To check the existence of a witness
for ψ in DDSA B, we combineNψ with B to a cross-product
automaton Nψ

B , exploiting the notions from Sec. 3.
First, for technical reasons we add a dummy initial state

b′0 to B and update its states to B′ = B ∪ {b′0} and its tran-
sitions to T ′ = T ∪ {(b′0, a0, b0)} for a fresh action a0 with
guard(a0) = >. We call the resulting DDSA B′.
Definition 4.5. Let B′ = 〈B′, b′0,A, T ′, F, V, α0, guard〉 as
above, C a constraint set, and (Φ,∼) a summary for (B, C).
For a formula ψ ∈ LBC and Nψ as above, the product au-
tomaton Nψ

B = (P,Σ, R, p0, PF ) is as follows:
• States in P are triples (b, q, ϕ) s.t. b∈B′, q ∈Q, ϕ ∈ Φ;
• The initial state is p0 = (b′0, q0,

∧
Cα0

);
• There is a transition (b, q, ϕ) a−→ (b′, q′, ϕ′) inR iff b a−→ b′

in T ′, there is some ς ∈ Σ s.t. q ς−→ q′ in Nψ , and
− formula χ = update(ϕ, a) ∧ constr(ς) is satisfiable,

and ϕ′ ∼ χ; in this way, χ captures all current con-
straints that are either inherited from B or stem from
the transition of Nψ , given by constr(ς),

− ς is consistent with b a−→ b′, and



− (b′, q′, ϕ′) ∈ PF iff b′ ∈ F , q′ ∈ QF .
Note that R is well-defined in the sense that for every such
formula χ above, some ϕ′ with ϕ′ ∼ χ and (b′, ϕ′) ∈ Φ ex-
ists, because Φ is a history set (cf. Lem. 3.7). Thus, if (Φ,∼)
is a finite summary, the construction in Def. 4.5 terminates.
The next result states properties of the product construction,
the induction proofs of both directions are straightforward.
Lemma 4.6. Let σ be a symbolic run of B and w ∈ Σ∗.
There is a path π with σ = σ(π) to a node (b, q, ϕ) in Nψ

B
such that ϕ ∼ h(σ,w) iff w is accepted by Nψ , consistent
with σ, and h(σ,w) is satisfiable.
We next state our main result, where h(σ,w) denotes
h(σ, 〈constr(ς0), . . . , constr(ςn)〉) for word w = ς0 · · · ςn.
Theorem 4.7. Let ψ ∈ LBC . The language of Nψ

B is non-
empty iff there is a run of B that is a witness for ψ.

Proof. (=⇒) Let π be a path to a final state pf in Nψ
B . By

Lem. 4.6, there is an accepting transition sequence in Nψ
labeled w = ς0 . . . ςn, and a symbolic run σ(π) : b0

a1−→
b1
∗−→ bn such that h(σ(π), w) is satisfiable by some α, and

ςi is consistent with bi−1 ai−→ bi, for all i, so w is consis-
tent with σ. By Lem. 3.5 (2), there is a run ρ : (b0, α0) a1−→
· · · an−−→ (bn, αn) abstracted by σ such that α = αn and
αi |=

∧
constr(ςi) for all i, 0≤ i≤n. Thus w is consistent

with ρ, and it follows from Lem. 4.4 that ρ is a witness. (⇐=)
Let ρ be a witness for ψ, and σ its abstraction. By Lem. 4.4,
Nψ accepts a word w that is consistent with ρ. Consistency
of w with ρ implies that w is also consistent with σ, and
that αi |=

∧
constr(ςi) for all i, 0≤ i≤n. Thus αn satisfies

h(σ,w) by Lem. 3.5 (1). By Lem. 4.6, the run ofNψ labeled
w and the symbolic run σ give rise to a path π in Nψ

B such
that w is consistent with σ. As Nψ accepts w, and the last
state of σ is final, also π is accepting.

We illustrate the product construction as well as the wit-
ness extraction on a simple example.
Example 4.8. Consider the DDSA B1 from Fig. 1 and a
formula ψ = ♦(y > 5). We use the NFA Nψ obtained in
Ex. 4.2, removing the leftmost deadlock state for compact-
ness. Then, the product automaton is as follows:

0 ψ x= y= 0

1 ψ x= y= 0

2 ψ x>y ∧ y= 0

1 ψ x> 0 ∧ y >x

2 ψ x>y ∧ y > 0

1 > x> 0 ∧ y >x ∧ y > 5

2 > x>y ∧ y > 5

1 > x> 5 ∧ y >x

a0

a1

a2

a1 a2

a2 y > 5

a2

y > 5

a1
y > 5

a1

a2 a1

As Nψ
B has a final state (shown with double border), by

Thm. 4.7 a witness for ψ exists. Such a witness can e.g.
obtained from the accepting path drawn in red, which
corresponds to w = 〈∅ ∅ {y > 5} ∅〉 accepted by Nψ , and
the symbolic run σ : 1 a1−→ 2 a2−→ 1 a1−→ 2 of B1. The formula
ϕ ≡ h(σ,w) in the final state is satisfiable, and every satis-
fying assignment α gives rise to a witness run by Lem. 3.5.
For instance for α(x) = 9, α(y) = 7, one possible solution
is (1,

[
x=0
y=0

]
) a1−→ (2,

[
x=1
y=0

]
) a2−→ (1,

[
x=1
y=7

]
) a1−→ (2,

[
x=9
y=7

]
).

5 Conditions for Finite Summary
Thanks to Thm. 4.7 we can check for witnesses over DDSAs
that admit a finite summary. Unfortunately, however:

Lemma 5.1. The finite summary property is undecidable.

Proof (sketch). Consider a DDSA B encoding a Minsky ma-
chine. B admits a finite summary iff the counter configura-
tions are bounded, which is undecidable.

In this section we identify relevant, sufficient conditions for
finite summary. In short, these are the following (the equiv-
alence relation used in Def. 3.8 is given in parentheses).
C1: B is over monotonicity constraints (≡) Thm. 5.2
C2: B is over gap-order constraints (∼K) Thm. 5.5
C3: B is feedback free (≡) Thm. 5.8
C4: B has bounded lookback (≡) Thm. 5.10
While C1 and C2 restrict the constraint language, C3 and
C4 restrict the control flow (i.e., the shape of the DDSA).
C4 generalizes C3 as well as the case where B is acyclic.
Before explaining these conditions, we point out that the
DDSAs in Fig. 1 admit a finite summary. B1 can be seen
as a monotonicity constraint (MC) system over Q, or a gap-
order constraint (GC) system over Z, but C3 and C4 do not
apply. B2 is feedback free and it can be shown to have also
2-bounded lookback. B3 is a GC system over Z but no other
condition applies. B4 models a shopping process where two
products with prices a and b are chosen by a customer, and
the sum is computed in the variable s. B4 has 3-bounded
lookback, but due to the self-reference of s in sw = sr + b,
C3 does not apply, and neither do C1 or C2.
Monotonicity constraints (MCs) restrict Def. 2.1 as fol-
lows: MCs over variables V and domain D have the form
p� q where p, q ∈ D∪V and � is one of =, 6=,≤, <,≥, or
>. For MCs, we consider D to be R or Q. An MC-formula
is a boolean formula whose atoms are MCs. A DDSA is an
MC-DDSA whose guards are conjunctions of MCs.

It is known that if ϕ is an MC-formula over constants K
and variables V ∪{x}, then for a formula ∃x. ϕ, we can find
a formula ϕ′ ≡ ∃x. ϕ such that ϕ′ is an MC-formula over
constants K and variables V , using a quantifier elimination
procedure á la Fourier-Motzkin (Kroening and Strichman
2016, Sec. 5.4). In particular the set of constants K remains
the same. This fact is crucial for the next result:

Theorem 5.2. If B is an MC-DDSA and C a set of MCs then
(B, C) admits a finite summary.

Proof. Let K be the set of constants in C, α0, and guards of
B, and MCK the set of quantifier-free formulas whose atoms
are MCs over V , K, so MCK is finite up to equivalence. We
use Lem. 3.7 to show that ΦMC := B ×MCK is a finite his-
tory set. First, for allC ⊆C,

∧
(Cα0

∪C) ∈ MCK. If (b, ϕ) ∈
ΦMC and b a−→ b′ then update(ϕ, a)∧C = ∃U.ϕ(U)∧χ for
some MC-formula χ ∈ MCK. From quantifier elimination
one obtains some ϕ′ in MCK such that ϕ′ ≡ ∃U.ϕ(U) ∧ χ.
Thus (ΦMC,≡) is a finite summary by Lem. 3.9.

This result explains why the history set in Ex. 3.10 is finite.
MCs over Q and R are closed under negation, so Thms. 4.7



and 5.2 imply decidability of LTLf model checking. Note
that the proof of Thm. 5.2 fails for domain Z, as MCs over
Z are not closed under quantifier elimination. Instead, they
are covered by gap-order constraints, discussed next.

Gap-order constraints. Let X be a set of variables and
K ⊆ Z a finite set of constants such that 0 ∈ K. A gap-
order constraint (GC) over X and K restricts Def. 2.1 to
constraints of the form x−y ≥ k for x, y ∈ X∪K and k∈N.
We call a GC-formula a quantifier-free formula whose atoms
are GCs, and a GC-DDSA a DDSA where all guards are
conjunctions of GCs. GC-DDSAs are known to generalize
MC-DDSAs over Z (Bozzelli and Pinchinat 2014): for in-
stance, x = 3 is expressible by x− 3 ≥ 0 ∧ 3−x ≥ 0.
However, it is known that relaxing the GC definition to allow
also x− y ≤ k (or k < 0 in x− y ≥ k) renders reachability
in GC-DDSAs undecidable (Bozzelli and Pinchinat 2014).

In order to show that GC-DDSAs allow for a finite sum-
mary, we use the concept of a bounded approximation:
Given the set of constants K and K := max{|c − c′| + 1 |
c, c′ ∈ K}, the K-bounded approximation bϕcK of a GC-
formula ϕ is obtained from ϕ by replacing all constraints
x− y ≥ k where k ≥ K by x − y ≥ K. The next lemma
rephrases (Bozzelli and Pinchinat 2014, Props. 6 and 7):

Lemma 5.3. (1) A GC formula ϕ over variables X and
constants K is satisfiable iff bϕcK is. (2) GC formulas ϕ
over variables U and K, and ψ over U ∪ V and K satisfy
b∃U.ϕ ∧ ψcK ≡ b∃U.bϕcK ∧ bψcKcK .

In the remainder of this section, let B be a GC-DDSA and
C a constraint set, such that Cα0

and C consist of GCs over
variables V and constants K, and all guards of B are GCs
over V r ∪ V w and K, with the bound K as above. Below
we use the fact that GC formulas are closed under quantifier
elimination: if ϕ is a GC formula over variables V ∪{x} and
constants K, we can find a GC formula ϕ′ that is equivalent
to ∃x. ϕ, quantifier-free, and over the variables V (though
the constants in ϕ′ need not be K). For details, see (Revesz
1993), (Bozga, Gı̂rlea, and Iosif 2009, Thm. 2).

Let GCK be the set of quantifier-free formulas whose
atoms are GCs over V andK and ΦGC = B×GCK. As GCK
may be infinite, we consider finite summary w.r.t. the equiv-
alence relation ∼K defined as ϕ ∼K ψ iff bϕcK ≡ bψcK .

Example 5.4. For B3 from Fig. 1 we have K = {0, 2, 3}, so
K = 4 (if C = ∅, otherwise constraints in C need to be in-
cluded). The history constraints h(σ4) ≡ (x≥ 5) ∧ (y≥ 6)
and h(σ6) ≡ (x≥ 8) ∧ (y≥ 9) from Ex. 3.11 hence sat-
isfy h(σ4) ∼K h(σ6) because their cutoff is equal, namely
bh(σ4)cK = bh(σ6)cK = (x≥ 4) ∧ (y≥ 4).

Theorem 5.5. (ΦGC,∼K) is a finite summary for B and C.

Proof (sketch). We use Lem. 3.7 to show that ΦGC is a his-
tory set: first, for allC ⊆C,

∧
(Cα0∪C) is in GCK. Next, for

(b, ϕ) ∈ ΦGC and b a−→ b′, there is some GC-formula χ over
U ∪ V and K such that update(ϕ, a) ∧ C = ∃U.ϕ(U) ∧ χ.
From quantifier elimination we get a GC-formula ϕ′ over V
and K with ϕ′ ≡ ∃U.ϕ(U) ∧ χ, so ϕ′ ∈ GCK. It remains to
check Def. 3.8: Suppose ϕ ∼K ψ, so bϕcK ≡ bψcK . Equi-
satisfiability of ϕ and ψ follows from Lem. 5.3 (1). We can

write update(ϕ, a)∧C = ∃U.ϕ(U)∧χ and update(ψ, a)∧
C = ∃U.ψ(U) ∧ χ for some GC-formula χ over U ∪ V and
K. Then b∃U.ϕ(U)∧χcK ≡ b∃U.ψ(U)∧χcK follows using
Lem. 5.3 (2). Finally, (ΦGC,∼K) has finitely many equiva-
lence classes as the number ofK-bounded GCs is finite.

With Thm. 4.7 it follows that model checking of a formula ψ
is decidable if ¬ψ is expressible in LBC . However, the latter
is not guaranteed for GC-DDSAs since GCs are not closed
under negation. For instance, �(x≥ y) can be checked as
its negation is expressible as ♦(y−x≥ 1); but�(x− y≥ 2)
cannot as its negation is not expressible in LBC with GCs.

Feedback freedom (Damaggio, Deutsch, and Vianu 2012)
achieves decidability by forbidding variable updates that de-
pend on an unbounded history: it requires that for every de-
pendency between two instances xi, xj of a variable x in a
run, another “guard” variable y, keeps its value for the time
span [i, j] of the dependency. More precisely, let σ be a sym-
bolic run of length n whose k-th action is ak, and C a con-
straint set. The computation graph Gσ,C is the undirected
graph with nodes V = {vi | v ∈ V and 0≤ i≤n} and an
edge from xi to yj iff xi and yj occur in a common literal of
∆ak(Vk−1, Vk) ∧ C(Vk), for some C ⊆ C and i, j, k ≤ n.
The subgraph of Gσ,C of all edges corresponding to equality
literals xi = yj for xi, yj ∈ V is denoted Eσ,C .

Let≡E be the smallest equivalence relation on V contain-
ing Eσ,ψ , so that the equivalence classes of ≡E are the con-
nected components of Eσ,ψ . The equivalence class of xi ∈
V is denoted [[xi]], and the span of [[xi]] is the set of affected
instants, i.e., span([[xi]]) = {j | ∃v ∈V with vj ∈ [[xi]]}.
Definition 5.6. For a DDSA B and constraint set C, the
pair (B, C) is feedback-free if for every symbolic run σ, ev-
ery path in Gσ,C from xi to xj contains a node y such that
span([[xi]]) ∪ span([[xj ]]) ⊆ span([[y]]).

The next example illustrates this concept.

Example 5.7. For runs σ2 of B2 and σ4 of B4 (cf. Fig. 1)
and C = {x> 5, s> 0}, we get the following graphs Gσi,C:

x
y

σ2 :
0
1

1
2

2
2

3
2

4
3

a

s

b

σ4 :
0
1

1
1

2
2

3
2

4
3

5
1

where edges in Eσi,C are drawn solid and others dotted. For
σ2, we have span([[y2]]) ∪ span([[y3]]) ⊆ span([[x1]]). The
graph is similar for other runs, so that B2 is feedback free;
but B4 is not, as witnessed by the path from s3 to s4.

We postpone the proof of the next theorem, to show below
that feedback freedom is a special case of bounded lookback.

Theorem 5.8. Feedback freedom implies finite summary.

Bounded lookback. We next show that a DDSA B has finite
summary if, intuitively, at any point of a run of B the values
of V depend on a bounded number of earlier steps. Through-
out this section, we consider a DDSA B and constraint set
C. Moreover, we denote by [[Gσ,C ]] the graph obtained from
Gσ,C by collapsing all edges in Eσ,C .



Definition 5.9. The pair (B, C) has bounded lookback if
there is some K such that for all symbolic runs σ of B, all
acyclic paths in [[Gσ,C ]] have length at most K.

For instance, after collapsing all solid (i.e., Eσ4,C) edges of
Gσ4,C in Ex. 5.7, the longest path has length 3. In fact, one
can show that (B4, C) has bounded lookback for K = 3.

Theorem 5.10. Bounded lookback implies finite summary.

Proof (sketch). Let Ψ be the set of formulas with free vari-
ables V , quantifier depth at most K · |V |, and vocabulary
C, Cα0

, and guards of B. As the quantifier depth is bounded
and the set of atoms in the vocabulary is finite, Ψ is finite
up to equivalence. Induction on σ shows that B × Ψ is a
history set: If σ is empty, h(σ,C) is quantifier free and has
all atoms in Cα0

, hence it is in Ψ. Otherwise, by induction
hypothesis, h(σ|n,C|n) is equivalent to some ϕ ∈ Ψ, so
h(σ,C) ≡ ∃U.ϕ(U) ∧ χ =: ϕ′ for some quantifier free χ.
Let [[ϕ′]] be the formula that is obtained from ϕ′ by eliminat-
ing all equality literals x= y, and substituting all variables
in an equivalence class by a representative. As [[ϕ′]] encodes
[[Gσ,C ]] and (B, C) has K-bounded lookback, [[ϕ′]] is equiv-
alent to a formula that has quantifier depth at most K · |V |.
Hence, Ψ must contain a formula equivalent to [[ϕ′]].

Note that all acyclic DDSAs have bounded lookback, for K
the number of states. For feedback-free systems, (Damag-
gio, Deutsch, and Vianu 2012, Lem. 5.4) shows that [[Gσ,C ]]
is a tree of depth at most |V |, so that Thm. 5.8 follows from:

Lemma 5.11. If (B, C) is feedback-free then it has 2|V |-
bounded lookback.

For a fixed K, bounded lookback is decidable in a similar
way as feedback freedom (Damaggio, Deutsch, and Vianu
2012, Sec. 4.4), by enumerating all possible variable depen-
dencies in symbolic runs of B. While (Damaggio, Deutsch,
and Vianu 2012) discovered that LTL model checking is de-
cidable for feedback-free systems, the respective result—
implied by Thms. 4.7 and 5.10—for the larger class of
DDSAs with bounded lookback is new.

6 Modularity
In this section we show that a DDSA admits a finite sum-
mary if it is suitably decomposable into smaller systems that
enjoy this property. As finite summary of the subsystems
may be due to different criteria C1–C4, modularity results
substantially extend applicability of our approach. As an ar-
bitrary splitting of a DDSA B into subsystems with finite
summary does not imply that B inherits the property, we
consider two specific ways of decomposition for a DDSA
B = 〈B, b0,A, T, F, V, α0, guard〉:
Definition 6.1. SupposeB = B1∪B2,B1∩B2 = {b}, and
T contains neither edges fromB2 toB1, nor fromB1\{b} to
B2\{b}; Let T1 and T2 be the projections of T toB1×A and
B2 ×A, respectively. Then B is sequentially decomposable
into the DDSAs B1 = 〈B1, b0,A, T1, {b}, V, α0, guard〉
and B2 = 〈B2, b,A, T2, F, V ∪ U,αU , guard〉, where αU
is the assignment such that αU (V ) = U , for some set of
variables U such that |U | = |V | and U is disjoint from V .

Definition 6.2. Let V = V1 ]V2 such that all constraints in
{guard(a) | a∈A} ∪ C are over V1 or V2.
Then (B, C) is variable-decomposable into (B1, C|V1

) and
(B2, C|V2

) where Bi = 〈B, b0,A, T, F, Vi, α0|Vi
, guardi〉,

and guard i(a) is guard(a) if it is over Vi, and > otherwise.
Both ways of decomposition give rise to a modularity result:
Theorem 6.3. Let B be a DDSA admitting a decomposi-
tion into B1 and B2 that is either (a) sequential and so that
(Bi, C) has finite summary (Φi,≡), or (b) variable and so
that (Bi, C|Vi

) has finite summary (Φi,∼i), for some C and
both i ∈ {1, 2}. Then (B, C) admits a finite summary.

Proof (sketch). (a) For Φ = Φ1 ∪ {∃U. ϕ1(U) ∧ ϕ2 | ϕ1 ∈
Φ1 and ϕ2 ∈ Φ2}, the pair (Φ,≡) is a finite summary. (b)
We show that Φ = {ϕ1 ∧ ϕ2 | ϕ1 ∈ Φ1 and ϕ2 ∈ Φ2} with
∼1 and ∼2 combined is a finite summary.

We conclude this section by showing that Thm. 6.3 allows us
to handle our motivating example Ex. 1.1. Note that decid-
ability does not follow by any of the criteria C1–C4 alone.
Example 6.4. The systemB of Ex. 1.1 is variable decompos-
able into a red GC-DDSA B1 over {b, d}, and a blue/green
system B2 over {o, s, t}. B2 can in turn be sequentially split
into a blue MC-DDSA B21, and the green single-step system
B22 having 1-bounded lookback. By Thm. 6.3, B has finite
summary because so do B1, B21, and B22. Then Thm. 4.7
applies to check that there is no witness for ♦(sold∧d> 0∧
o≤ t) (so property ψ in Ex. 1.1 holds). On the other hand,
we can obtain a witness for♦(b= 1∧o> t∧♦(sold∧b 6= 1)),
showing that a bid above the threshold t need not win.

7 Conclusion
Implementation. We implemented our approach in the pro-
totype ada (arithmetic DDS analyzer), available via a web
interface (https://ltl.adatool.dev) where source
code and examples can be found. ada takes a DDSA B
and an LTLf formula ψ and checks whether B and the con-
straints C in ψ admit a finite summary according to C1–C4,
or if B, C is suitably decomposable (cf. Sec. 6). If finite sum-
mary is detected, ada visualizes the constraint graph, the
NFA Nψ , and Nψ

B , then extracts a witness for ψ if it ex-
ists (cf. Thm. 4.7). In the extended version (Felli, Montali,
and Winkler 2021) we show results for relevant examples,
including Ex. 1.1 and processes converted from Petri nets
with data (Mannhardt et al. 2016). ada is written in Python
and uses the Z3 SMT solver (de Moura and Bjørner 2008).
Future work. We see many possibilities for extensions:
we expect finite summary to cover further known decid-
able cases, e.g. DDSAs with integer periodicity constraints
(Demri 2006); and flat systems with Presburger-definable
loop effects (Barrett, Demri, and Deters 2013). For the cri-
teria C1–C4, it would be interesting to investigate the com-
plexity bounds implied by our method. Further decomposi-
tion results would be useful, too, e.g. forms of parallel exe-
cution. Next, we want to study whether our techniques apply
to branching-time properties, as well as transition systems
with full-fledged relational databases in the vein of (Deutsch
et al. 2018; Calvanese et al. 2020).
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