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Abstract. Data-aware processes represent and integrate structural and
behavioural constraints in a single model, and are thus increasingly inves-
tigated in business process management and information systems engi-
neering. In this spectrum, Data Petri nets (DPNs) have gained increasing
popularity thanks to their ability to balance simplicity with expressive-
ness. The interplay of data and control-flow makes checking the correct-
ness of such models, specifically the well-known property of soundness,
crucial and challenging. A major shortcoming of previous approaches
for checking soundness of DPNs is that they consider data conditions
without arithmetic, an essential feature when dealing with real-world,
concrete applications. In this paper, we attack this open problem by
providing a foundational and operational framework for assessing sound-
ness of DPNs enriched with arithmetic data conditions. The framework
comes with a proof-of-concept implementation that, instead of relying on
ad-hoc techniques, employs off-the-shelf established SMT technologies.
The implementation is validated on a collection of examples from the
literature, and on synthetic variants constructed from such examples.

Keywords: Soundness · Data Petri nets · arithmetic conditions · SMT.

1 Introduction

Integrating structural and behavioral aspects to holistically capture how infor-
mation systems dynamically operate over data through actions and processes is
a central problem in business process management (BPM) [20] and information
systems engineering [23]. This is witnessed by the mutual cross-fertilization of
the two areas on this topic, with models and approaches originating from BPM
and its underlying formal foundations being then applied to information and
enterprise systems [18,11,21], and vice-versa [3,24].

The interplay of data and control-flow makes checking the correctness of such
models crucial and challenging. From the formal point of view, the problem is
undecidable even for severely restricted models and correctness properties, both
in the case of simple data variables [13] and richer relational structures [5,7].
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Fig. 1. Data-aware process for road fines [17].

From the modeling perspective, the difficulty in combining these two dimensions
is exacerbated by the fact that, more and more, models are obtained through a
two-step approach: a first, automated discovery step produces a baseline model
from event data, followed by a refinement and modification step driven by human
ingenuity. The following example illustrates the challenge.

Example 1. A management process for road fines from an information system
of the Italian police was presented as in [17] using a Data Petri nets (DPN).
DPNs have gained increasing popularity thanks to their ability to balance sim-
plicity with expressiveness. They focus on the evolution of a single (case) object
evolved by the process (or a fixed number of inter-related objects), combining a
Petri net-based control-flow with case variables and data conditions, capturing
decisions and constrained updates. The process maintains seven case data vari-
ables: a (amount), t (total amount), d (a dismissal code), p (points deducted),
e (expenses), and three time intervals ds, dp, dj . The process starts by creating
a fine for a traffic offense in the system (create fine). A notification is sent to
the offender within 90 days, i.e., 2160h, by action send fine) and this is entered
in the system (insert notification). If the offender pays an amount t that exceeds
the fine a plus expenses e, the process terminates via τ1, τ2, or τ3. For the less
happy paths, there is a credit collection action if the paid sum was not enough;
and the offender may file a protest, via appeal to judge, appeal to prefecture, and
subsequent actions. The appeals again need to respect a certain time frame.

For simplicity, in Figure 1 we present the model as a transition system instead
of a Petri net. It was generated from real-life logs through multi-perspective pro-
cess mining techniques, then enriched manually with more sophisticated arith-
metic constraints extracted from domain knowledge [17]. What is not obvious is
that the process gets stuck in state p7 if send to prefecture writes value d> 1.

Examples like this call for a virtuous circle where process mining, human
modelling, and automated verification techniques for correctness checking em-
power each other. A well-established formal notion of correctness for dynamic
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systems is that of soundness [1], defined over the well-known Petri net class of
workflow nets. Intuitively, this property requires (i) that there are no activi-
ties in the process that cannot be executed in any of the possible executions;
(ii) that from every reachable configuration the process can always be concluded
by reaching a final configuration and (iii) that final configurations are always
reached in a ‘clean way’, without leaving any thread of the process still hanging.
After the seminal work in [1], which solely focuses on the evolution of single
process instances in pure control-flow terms, several follow-up approaches were
brought forward to define and study soundness for richer control-flow structures
[2], several isolated cases [12], and presence of resources [22], showing decidability
of the problem without entering into the engineering of verification tools.

When considering data-aware processes, the standard formulation of sound-
ness is insufficient, as it does not consider how data affects the execution. This
makes prior works not readily applicable to solve the problem. Refined notions
of soundness have in fact been put forward to take data into account. Specifi-
cally, in [13] the property of data-aware soundness was obtained by lifting the
standard soundness property of workflow nets to DPNs [16,13] (see the exam-
ple above), by resorting to a translation to colored Petri nets. However, data
conditions attached to activities were restricted to variable-to-constant compar-
isons. The approach was later extended to DPNs with a guard language that
supports direct comparison of case data [8]. In parallel, [4] introduced notions of
decision-aware soundness, where the focus is on data consumed and produced
by (DMN) decision tables attached to the process. It was later shown in [15] how
DPNs could be used to capture BPMN processes enriched with DMN S-FEEL
decision tables, and how the different decision-aware soundness notions [4] could
be recast as data-aware soundness [13].

While data-aware soundness is a crucial notion that captures also the prob-
lem in Ex. 1, a common shortcoming present in the literature is the limited
expressivity of data conditions attached to activities and decision rules: they
cannot handle expressions with arithmetic computations. For instance, one can
check that the current credit card balance b is equal or larger than the price p
of the purchased item (i.e., that b > p), but not that it is greater than the price
plus some threshold amount t that could be obtained through a human task (i.e.,
that b > p+t). Clearly, this makes the existing technique not applicable to a very
large number of real world applications (for instance, Ex. 1), revealing a research
gap in the field that motivates the need of novel results in this spectrum.

Contributions and methodology. Having identified this open research prob-
lem, we aim at contributing to the advancement of the body of knowledge in
information systems engineering by answering three research questions:

1. Is soundness checking decidable for DPNs equipped with arithmetic?
2. Is there an operational way to conduct the check?
3. Is this operational way effective from the computational point of view?

We answer these through theoretical and algorithmic research, and through the
creation of a concrete IT proof-of-concept artifact for soundness checking.
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Specifically, we focus on DPNs supporting unlimited addition of variables but
only constant multiplication, that is, linear arithmetic, which captures many real-
world use cases. We address the first two research questions at once by lifting the
approach in [8] to our richer setting, introducing a soundness checking procedure
consisting of three algorithmic steps: (1) we transform the DPN into a labelled
transition system called data-aware dynamic system (DDS) [14]; (2) we construct
a constraint graph, which acts as a symbolic representation of the reachable state
space via a finite set of formulas; (3) a set of satisfiability checks is performed
using the formulas in the graph, and we prove that the DPN is unsound if and
only if one of these checks succeeds. The constraint graph built for a DDS with
arithmetic may in general be infinite. However, it is finite and computable, so
that our check becomes a decision procedure, when the given process guarantees
that reachable configurations are suitably limited (e.g. in that only a bounded
part of the computation history is relevant, or the constraint language is suffi-
ciently restricted). This requirement holds for well-identified classes of processes,
formally captured by a finite history set [9]. For instance, it applies to all DPNs
used in our evaluation, including Ex. 1.

Towards answering the third research question, we provide a proof-of-concept
implementation of our framework in the tool ada. Being research in this setting
at an early stage, we cannot rely on well-established empirical or experimental
methods to validate this IT artifact. To mitigate this problem, we proceed as
follows. First and foremost, instead of relying on ad-hoc techniques, our tool
employs off-the-shelf SMT solvers as a backend. This guarantees that the main
computation burden, namely the satisfiability checks in the third algorithmic
step, is handled by third-party, industrially-validated software. Secondly, since
there is no benchmark for DPNs, we set up a preliminary, performance evaluation
in two steps: (i) we collect, and check soundness of, all DPN examples/case
studies present in the literature to model real-world data-aware processes in
information systems of various types; (ii) we construct synthetic variants of
some of these examples, in order to test how the performance of ada changes by
increasing actions, variables and conditions present in the model.

The paper is structured as follows. In Sec. 2, we fix our DPN model and
define data-aware soundness, illustrating its high-level verification procedure in
Sec. 3. The following sections detail the required steps: in Sec. 4 we relate data-
aware soundness of a DPN to that of a corresponding transition system. We
explain the constraint graph in Sec. 5, and show in Sec. 6 how it can be used to
check data-aware soundness. Our implementation and experiments are the topic
of Sec. 7. In Sec. 8 we conclude and comment on future work.

Proofs of the technical results are available in an extended report [10].

2 Background

In this section we summarize some background on constraints, DPNs and data-
aware dynamic systems, as well as data-aware soundness.
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Constraints. We start by fixing a set of data types for the variables manipulated
by a process: let Σ = {bool, int, rat} with associated domains of booleans
D(bool) = B, integers D(int) = Z, and rationals D(rat) = Q. We assume a
fixed set of process variables V , so there is a function type : V 7→ Σ assigning
a type to each variable. For instance, in Ex. 1 the set of process variables is
V = {a, d, dj, dp, ds, p, t} all of type int (i.e., type(a) = int, etc). For a type
σ ∈Σ, Vσ denotes the subset of variables of type σ. To manipulate variables, we
consider expressions c with the following grammar:

c := xbool | b | n1 op n2 | r1 op r2 | c1 ∧ c2
op := 6= | = | > | > n := xint | k | k1 · n1 + k2 · n2 r = xrat | q | q1 · r1 + q2 · r2

where: xbool ∈ Vbool, xint ∈ Vint, and xrat ∈ Vrat respectively denote a boolean,
integer, and rational variable, while b ∈ B, k ∈ Z, and q ∈ Q respectively denote
a boolean, integer, and rational constant. We consider booleans, integers, and
rationals as three prototypical examples of three datatypes, respectively relying
on a finite, infinite discrete, and infinite dense domain. Similar datatypes, such
as strings equipped with equality and real numbers, can be seamlessly handled.
These expressions will be used to capture conditions on the values of variables
that are read and written during the execution of process activities. For this
reason, we call them constraints. The set of constraints over V is denoted C(V ).

For our process variables V , we consider two disjoint sets of annotated vari-
ables V r = {vr | v ∈V } and V w = {vw | v ∈V } which are read and written by
process activities, respectively, as explained below, and we assume type(vr) =
type(vw) = type(v) for every v ∈ V . For instance, the constraint tr > ar + er in
Ex. 1 dictates that the current value of variable t is greater or equal than the
sum of the values of a and r; whereas 0 6 djw∧djw 6 1440 requires that the new
value given to dj (i.e., assigned to dj as a result of the execution of the activity
to which this constraint is attached) is between 0 and 1440. On the other hand,
aw > ar would mean that the new value of a is larger than its current value.
More generally, given a constraint c as above, we refer to the annotated variables
in V r and V w that appear in c as the read and written variables, respectively.

An assignment α is a total function α : V 7→ D mapping each variable in V
to a value in its domain. We say that α satisfies a constraint c over V , written
α |= c, if the evaluation of c under α is true. For instance, the assignment α such
that α(t) = 10, α(a) = 7, and α(v) = 0 for v ∈ V otherwise, satisfies tr > ar+er.

Our constraint language is that of linear arithmetic over integers and ratio-
nals, which is decidable, and for which a range of mature SMT (satisfiability
modulo theories) solvers is available. Moreover, linear arithmetic is known to
enjoy quantifier elimination [19]: if ϕ is a formula with atoms in C(V ∪ {x}),
there is some ϕ′ with free variables V that is logically equivalent to ∃x.ϕ, i.e.,
ϕ′≡∃x.ϕ. We assume that qe is a quantifier elimination procedure that returns
such a formula, as implemented in off-the-shelf SMT solvers.
We adopt the following standard definition of Data Petri Nets (DPNs) [16,17].

Definition 1 (DPN). A DPN is a tuple N = 〈P, T, F, `,A, V, guard〉, where
(1) 〈P, T, F, `〉 is a Petri net with non-empty, disjoint sets of places P and tran-
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sitions T , a flow relation F : (P × T ) ∪ (T × P ) 7→ N and a labelling function
` : T 7→ A, where A is a finite set of activity labels; (2) V is a set of process
variables (all with a type); and (3) guard : T 7→ C(V r ∪V w) is a guard mapping.

Example 2. Consider a simple auction process modeled by the DPN in Fig. 2.
The initial and final markings are MI = {p0} and MF = {p3}. It maintains the
set of variables V = {o, t}, where o (domain Q) holds the last offer issued by a
bidder, and t (domain Z) is a timer. The initial assignment is αI (o) = αI (t) = 0.
We briefly explain the working of the process: the action init initializes the timer
t to a positive value (e.g., of days) and the offer o to 0; as long as the timer has
not expired, it can be decreased (action timer), or bids can be issued, increasing
the current offer (bid); the item can be sold if the timer expired and the offer is
positive (hammer). We denote this DPN, consisting of all actions drawn in black
in Fig. 2, by N . For illustration purposes, we will also consider two variants of
this DPN: Nreset extends N by a reset action that restarts the process if the offer
in the final state is 0 (drawn in red), and Nthresh adds to N the transition thresh
which leads to the final state if the offer exceeds a threshold (drawn in blue).

init [tw > 0 ∧ ow = 0]

bid [tr > 0 ∧ ow >or]

hammer [tr 6 0 ∧ or > 0]

timer [tr > 0 ∧ tw <tr]

reset [or = 0]

thresh [or > 1000]

p0

p1 p2

p3

Fig. 2. DPN for simple auction model.

The variables that are read and
written by a transition t are denoted
read(t)={v | vr occurs in guard(t)},
write(t)={v | vw occurs in guard(t)},
respectively. For instance, for t the ac-
tivity labelled bid in Fig. 2, write(t) =
{o} and read(t) = {o, w}.

We call a state variable assign-
ment, denoted α, an assignment with

domain V . In contrast, a transition variable assignment, denoted β, is a (partial)
function that assigns values of correct type to the annotated variables V r ∪ V w,
used to specify how variables change during activity executions (cf. Def. 2).

For a DPN N with underlying Petri net (P, T, F, `), a marking M : P 7→ N
assigns every place a number of tokens. A state ofN is a pair (M,α) of a marking
and a state variable assignment, which thus accounts for both the control flow
progress and the current values of variables in V . For instance, ({p0},

[
t=0
o=0

]
) is a

state for the net of Ex. 2. We next define when transitions may fire in a DPN.

Definition 2 (Transition firing). A transition t ∈ T is enabled in a state
(M,α) if a transition variable assignment β exists such that:

(i) β(vr) = α(v) for every v ∈ read(t), i.e., β assigns read variables as by α,
(ii) β |= guard(t), i.e., β satisfies the guard; and

(iii) M(p) > F (p, t) for every p so that F (p, t) > 0.
An enabled transition may fire, producing a new state (M ′, α′), s.t. M ′(p) =
M(p)−F (p, t)+F (t, p) for every p ∈ P , and α′(v) =β(vw) for every v ∈ write(t),
and α′(v) =α(v) for every v 6∈ write(t). A pair (t, β) as above is called (valid)
transition firing, and we denote its firing by (M,α) (t,β)−−−→ (M ′, α′).

Given N , we fix one state (MI , α0) as initial, where MI is the initial marking
of the underlying Petri net (P, T, F, `) and α0 is a state variable assignment
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that specifies the initial value of all variables in V . Similarly, we denote the final
marking asMF , and call final any state of the form (MF , αF ) for some αF . For in-
stance, the net in Ex. 2 admits a transition firing ({p0},

[
t=0
o=0

]
) init−−→ ({p1, p2},

[
t=1
o=0

]
)

from its initial state, while ({p3},
[
t=0
o=5

]
) is one final state.

We say that (M ′, α′) is reachable in a DPN iff there exists a sequence of tran-

sition firings (MI , α0) (t1,β1)−−−−→ . . . (tn,βn)−−−−−→ (M ′, α′), denoted also as (MI , α0)→∗
(M ′, α′). Such a sequence is a (valid) process run if the resulting state (M ′, α′)
is final. For instance, a possible sequence of transition firings in Ex. 2 (in which
the timer t is initialized to 1 day, then decremented) is:

({p0},
[
t=0
o=0

]
) init−−→ ({p1, p2},

[
t=1
o=0

]
) timer−−−→ ({p1, p2},

[
t=0
o=0

]
) (1)

For simplicity of presentation, in the remainder of this paper, we restrict to
bounded DPNs, that is, DPNs where the number of tokens in reachable markings
is bounded by some m∈N. Indeed, detecting unboundedness (which in turn
witnesses unsoundness) can be done as in [8], where it is shown that the standard
unboundedness detection techniques based on coverability graphs also apply to
the data-aware setting. For instance, the DPNs N , Nreset, and Nthresh in Ex. 2
are 1-bounded. Next, we define the crucial property of data-aware soundness.

Definition 3 (Data-aware soundness). A DPN is data-aware sound iff:
(P1) if (MI , α0)→∗ (M,α) there is some α′ such that (M,α)→∗ (MF , α

′) for
all M , α, i.e., any sequence can be continued to a process run;

(P2) if (MI , α0) →∗ (M,α) and M >MF then M =MF for all M , α, i.e.,
termination is clean; and

(P3) for all t ∈ T there is a sequence (MI , α0) →∗ (M,α) (t,β)−−−→ (M ′, α′) for
some M , M ′, α, α′, and β, i.e., there are no dead transitions.

For instance, the DPN N from Ex. 2 violates (P1) because after the sequence
(1) above no further transition is applicable, but the reached state is not final.
Nreset also violates (P3) because the transition reset is dead: if a token reaches
the place p3, o will never have value 0. On the other hand, Nthresh violates also
(P2) as the following steps lead to marking {p2, p3} > {p3} = MF :

({p0},
[
t=0
o=0

]
) init−−→ ({p1, p2},

[
t=1
o=0

]
) bid−−→ ({p1, p2},

[
t=1
o=1000

]
) thresh−−−→ ({p2, p3},

[
t=1
o=1000

]
)

3 Soundness Checking: The High-Level Perspective

Alg. 1 gives a bird’s-eye view of our soundness checking procedure. The initial
step is to transform the given DPN N into a special kind of transition sys-
tem (called DDS) B, by unfolding the interleaving semantics. The respective
procedure DPNtoDDS is detailed in Sec. 4. Next, in line 3, the procedure
computeCG constructs the constraint graph of B as a symbolic representation
of all reachable states, as explained in Sec. 5. In lines 4, 6, and 8 the routines
badTermination, deadTransition, and blockedState then use the con-
straint graph CGB to check whether N violates the properties (P2), (P3), and
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(P1) of Def. 3, respectively (see Sec. 6). If one of these properties does not hold,
the procedure returns false immediately, otherwise data-aware soundness is con-
firmed by returning true in line 10. The reason why we check (P1) last is that
the other two checks are significantly cheaper.

Algorithm 1 Procedure to check data-aware soundness of a DPN

1: procedure checkSound(N )
2: B ← DPNtoDDS(N )
3: CGB ← computeCG(B)
4: if badTermination(CGB,N ) then return false . see Alg. 2
5: if deadTransition(CGB,N ) then return false . see Alg. 2
6: if blockedState(CGB,N ) then return false . see Alg. 2
7: return true

4 From DPNs to Transition Systems

This section details the first step in our soundness checking procedure: to unfold
the interleaving semantics of the given DPN into a labelled transition system
called data-aware dynamic system (DDS) [14]. We start by defining DDSs.

Definition 4. A DDS B = 〈B, bI ,A, ∆,BF , V, αI , guard〉 is a labelled transition
system such that (i) B is a finite set of states, with bI ∈B the initial one; (ii) A
is a set of actions; (iii) ∆ ⊆ B×A×B is a transition relation; (iv) BF ⊆ B are
final states; (v) V is the set of process variables; (vi) αI is the initial assignment;
(vii) guard : A 7→ C(V r ∪ V w) fixes executability constraints on actions.

Fig. 3 shows three example DDSs (that are in fact obtained from transforming
the DPNs in Ex. 2, as defined below). The action guards are the same as in
Fig. 2, but have been omitted for readability. We denote a transition from state
b to b′ by executing an action a∈A as b a−→ b′. For instance, the DDS B in Fig. 3
admits a transition p0

init−−→ p12. A configuration of B is a pair (b, α) where b∈B
and α is an assignment. For instance, (p0,

[
t=0
o=0

]
) is the initial configuration of B

in Fig. 3. An action firing is a pair (a, β) of an action a∈A and a transition
variable assignment β, i.e., a function β : V r ∪ V w 7→ D. As defined next, an
action firing (a, β) transforms a configuration (b, α) into a new configuration
(b′, α′) by changing state as defined by action a, and updating the assignment α
to α′, in agreement with the action guard. In the new assignment α′, variables
that are not written keep their previous value as per α, whereas written variables
are updated according to β. Let write(a) = {x | xw ∈ V w occurs in guard(a)}.
Definition 5. A DDS B= 〈B, bI ,A, ∆,BF , V, αI , guard〉 admits a step from

configuration (b, α) to (b′, α′) via action firing (a, β), denoted (b, α) a,β−−→ (b′, α′),
if b a−→ b′ and (i) β(vr) = α(v) for all v ∈ V ; (ii) the new state variable assign-
ment α′ satisfies α′(v) = α(v) if v ∈ V \write(a), and α′(v) = β(vw) otherwise;
(iii) β |= guard(a), i.e., the guard is satisfied by β.
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Thus, the variable update works exactly as for the case of DPNs. For instance,
B in Fig. 3 admits a step (p0,

[
t=0
o=0

]
) init,β−−−→ (p12,

[
t=1
o=0

]
) where β(tr) = β(or) =

β(ow) = 0 and β(ow) = 1. Given a DDS B, a derivation ρ of length n from a
configuration (b, α) is a sequence of steps:

ρ : (b, α) = (b0, α0) a1,β1−−−→ (b1, α1) a2,β2−−−→ · · · an,βn−−−−→ (bn, αn)

We also associate with ρ the symbolic derivation σ that abstracts ρ, i.e., the
sequence σ : b0

a1−→ b1
a2−→ · · · an−−→ bn where only the state and action sequences

are recorded, but no concrete assignments are given. For some m < n, σ|m is
the prefix of σ that has m steps. We call a run of B a derivation starting from
(bI , αI ), and a symbolic run a symbolic derivation starting from bI . For instance,

ρ : (p0,
[
t=0
o=0

]
) init−−→ (p12,

[
t=1
o=0

]
) timer−−−→ (p12,

[
t=0
o=0

]
) (2)

is a derivation of the DDS B from Fig. 3, and also a run because it starts in the
initial state p0; ρ is abstracted by the symbolic run p0

init−−→ p12
timer−−−→ p12. One

may notice the similarity with the sequence of transition firings (1) in Sec. 2.

Transformation. It is straightforward to define the procedure DPNtoDDS(N )
used in Alg. 1 to transform a given, bounded DPN N into a DDS. To this end, we
consider in the rest of this section a k-bounded DPNN = 〈P, T, F, `,A, V, guard〉
with initial variable assignment αI , initial marking MI , and final marking MF .
We define DPNtoDDS(N ) as the DDS B = 〈B,MI ,A, ∆, {MF }, V, αI , guard〉
where B is the set of all k-bounded markings of N ; and (M,a,M ′) ∈ ∆ iff there
is some t∈T such that `(t) = a, M(p) > F (p, t) for every p so that F (p, t) > 0
and M ′(p) = M(p)− F (p, t) + F (t, p) for every p ∈ P . Indeed, Fig. 3 shows the
DDSs obtained for the DPNs N , Nreset, and Nthresh from Ex. 2.

After having defined the transformation from DPNs to DDSs, it remains
to relate data-aware soundness of a DPN with properties of its DDS repre-
sentation. To that end, we define some notions that turn out to be useful:
A DDS B= 〈B, bI ,A, ∆,BF , V, αI , guard〉 has a blocked state if there is a run
ρ : (bI , αI )→∗ (b, α) to some configuration (b, α) such that there is no derivation
(b, α)→∗ (bf , α

′) with bf ∈BF . Moreover, let a state b ∈ B be reachable if there
is a run (bI , αI )→∗ (b, α) for some α; and a transition (b, a, b′) ∈ ∆ be reachable

if there is a run (bI , αI ) →∗ (b, α) a,β−−→ (b′, α′) for some α, α′, and β. It is then
not hard to observe the following relationship between the properties (P1), (P2),
and (P3) in Def. 3 and properties of the DDS representation:

Lemma 1. If N is a DPN and B = DPNtoDDS(N ) has control states B,
– N satisfies (P1) iff B has no blocked states,
– N satisfies (P2) iff all M ∈B with M >MF are unreachable, and
– N satisfies (P3) iff for all transitions t∈T of N there are some M,M ′ ∈ B

such that (M, `(t),M ′) ∈ ∆ is reachable.

This relationship allows us to check data-aware soundness on the level of DDSs.
For instance, reset is not reachable in Breset as p3 is only reached via hammer, i.e.,
if o > 0, so Nreset does not satisfy (P3). Also, Bthresh admits the run (3) below to
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timer
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Fig. 3. DDSs B, Breset, and Bthresh for DPNs N , Nreset, and Nthresh.

state p23, corresponding to marking {p2, p3} in Nthresh, violating (P2). Finally,
B, Bthresh and Breset have the blocked state ({p1, p2},

[
t=0
o=0

]
), reachable via run (2).

ρ : (p0,
[
t=0
o=0

]
) init−−→ (p12,

[
t=1
o=0

]
) bid−−→ (p12,

[
t=1
o=1001

]
) thresh−−−→ (p23,

[
t=1
o=1001

]
) (3)

5 Constraint Graph

While numerical data and arithmetic are required to faithfully model processes
in many real-life information systems, they render the state space infinite. For in-
stance, the DDS B in Fig. 3 has infinitely many configurations such as (p12,

[
t=1
o=5

]
),

(p12,
[
t=2
o=3

]
), and (p12,

[
t=0
o=3

]
). However, not all state variable assignments differ

with respect to possible next actions: action hammer requires o> 0 and t 6 0,
while bid and timer need t> 0; but it is irrelevant whether, say, o> 4. Therefore,
(p12,

[
t=1
o=5

]
) and (p12,

[
t=2
o=3

]
) are indeed equivalent with respect to possible next

steps, but the configurations (p12,
[
t=2
o=3

]
) and (p12,

[
t=0
o=3

]
) are not. Now, the key

idea of the constraint graph is to symbolically represent equivalent configura-
tions using a tuple (b, ϕ) of a control state b and a formula ϕ over variables V .
For instance, for B we will distinguish (p12, (o= 0)∧ (t> 0)) (both bid and timer
apply) from (p12, (o= 0)) (we have no information about t, so only bid applies).

To formalize this idea, let B= 〈B, bI ,A, ∆,BF , V, αI , guard〉 be a given DDS.
We start with some auxiliary notions: The transition formula ∆a of action a
is given by ∆a(V

r
, V

w
) = guard(a) ∧

∧
v 6∈write(a) v

w = vr. It simply expresses

conditions on variables before and after executing the action: guard(a) must hold,
and the values of all variables that are not written are copied. E.g., for action bid
in Fig. 3, we have write(bid) = {o}, and ∆bid = (tr > 0) ∧ (ow >or) ∧ (tw = tr).
Next, we use the transition formula to define an update operation, representing
how a current state, captured by a formula ϕ, changes when executing action a.

Definition 6. For a formula ϕ and action a, let update(ϕ, a) = qe(∃U.ϕ[U/V ]∧
∆a[U/V

r
, V /V

w
]), where U is a set of variables that has the same cardinality

as V and is disjoint from all variables in ϕ.

Here, ϕ[U/V ] is the result of replacing variables V in ϕ by U , and similar for
∆a. For instance, if V = (o, t) we can take the renamed variables U = (o′, t′); for
ϕ = (t> 0) ∧ (o= 0) we then get update(ϕ, bid) = qe(∃o′ t′. (t′> 0) ∧ (o′= 0) ∧
(o>o′)∧(t= t′)), which is simplified by quantifier elimination to (t> 0)∧(o> 0).
The use of a quantifier in Def. 6 might look like a complication, but it allows
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bid
timer

hammer

hammer
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timer

timer

bid

timer bid timer

hammer

Fig. 4. Constraint graphs CGB, CGBthresh , and CGB(p12).

us to remember the previous state ϕ, even if variables are overwritten by action
a; afterwards, quantifier elimination can produce a logically equivalent formula
without ∃. Next, given assignment α, let Cα be the formula Cα

.
=
∧
v∈V v = α(v).

Definition 7. A constraint graph CGB(b0, α) for B, a state b0 ∈B, and assign-
ment α is a triple 〈S, s0, γ〉 where the set of nodes S consists of tuples (b, ϕ) for
b∈B and a formula ϕ, and γ ⊆ S ×A× S, inductively defined as follows:
(i) s0 = (b0, Cα) ∈ S is the initial node; and
(ii) if (b, ϕ) ∈ S and b a−→ b′ such that update(ϕ, a) is satisfiable, there is some

(b′, ϕ′) ∈ S with ϕ′ ≡ update(ϕ, a), and (b, ϕ) a−→ (b′, ϕ′) is in γ.

Intuitively, the constraint graph describes symbolically the states reachable in
B. Specifically, we write CGB for the graph CGB(bI , αI ) starting at the initial
state and the initial assignment. This is also the graph returned by the procedure
computeCG(B) used in Alg. 1. For instance, the first two graphs in Fig. 4 show
CGB and CGBthresh

, respectively. Nodes that have the control state p3 that is final
in B are drawn with double border; the coloring will be explained later.

For technical reasons, our procedure often requires to consider constraint
graphs that are built from an arbitrary state b and that, instead of assigning
variables V to specific values, only impose that they have the same value of
fresh placeholder variables V0. We denote this by CGB(b). E.g., the rightmost
graph in Fig. 4 shows CGB(p12), representing the states reachable in B from p12

where V = 〈o, t〉 is initially assigned the placeholder variables V0 = 〈o0, t0〉.
We next establish properties that connect constraint graphs to derivations of

the DDS B. For a path π : (b0, ϕ0) a1−→ (b1, ϕ1) a2−→ · · · an−−→ (bn, ϕn) in a constraint
graph, we denote by σ(π) the symbolic derivation b0

a1−→ b1
a2−→ · · · an−−→ bn

that has the same control state and action sequences. We now show that every
combination of a path in a constraint graph and a satisfying assignment for the
formula in its final node corresponds to a run in the DDS, and vice versa. To
that end, we need a fixed variable renaming α̂ : V 7→ V0.

Lemma 2. (1) CGB has a path π : (bI , CαI )→∗ (b, ϕ) where ϕ is satisfiable by
α, iff B has a run (bI , αI )→∗ (b, α) whose abstraction is σ(π).
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Algorithm 2 Checking soundness properties for CGB = 〈S, s0, γ〉 and DPN N
procedure badTermination(CGB,N )

return ∃(b, ϕ) ∈ S such that b corresponds to marking M in N and M >MF

procedure deadTransition(CGB,N )
return ∃ transition t of N such that @(s, `(t), s′) ∈ γ for some s, s′

procedure blockedState(CGB,N )
return ∃(b, ϕ) ∈ S such that b 6= bF and blocked(b, ϕ) satisfiable

(2) CGB(b) has a path π : (b, Cα̂) →∗ (b′, ϕ) s.t. ϕ is satisfiable by α, iff B has
derivation (b, α0)→∗ (b′, αn) abstracted by σ(π) with α0 =α|V0 and αn =α|V .

To illustrate this result, e.g. the run (3) corresponds to the path in CGBthresh

shown in red (see Fig. 3). On the other hand, the lemma reveals that B has runs
with the same action sequence for all assignments that satisfy (o> 1000)∧(t> 0).

As stated above, the construction of the constraint graph according to Def. 7
need not terminate. However, it does in many practical examples, which is related
to the following property identified in [9]: A DDS B has a finite history set if the
set of formulas ϕ obtained during the construction of the constraint graph (called
history constraints in [9]) is finite up to equivalence. Thus, if B has a finite history
set, and the procedure computeCG(B) checks eagerly for equivalent nodes while
executing Def. 7, the construction must produce a finite graph. Crucially, this
holds for a clearly identifiable class of systems used in the literature: it was shown
that if either the constraint language in B is restricted to variable-to-variable and
variable-to-constant comparisons, or if the control flow is such that the current
state depends only on finitely many actions in the past, the DDS B has indeed
a finite history set [9, Thms 5.2 and 5.9]. All examples of DPNs collected from
the literature (see Sec. 7) fall in one of these categories.

6 Data-aware Soundness

In this section we harness the constraint graph to check data-aware soundness.
To that end, we assume a DDS B = 〈B, bI ,A, ∆, {bF }, V, αI , guard〉 obtained by
translating a DPN N , such that bI = MI and bF = MF correspond to the initial
and final markings of N ; and we assume that CGB is the constraint graph of B.
The three requirements of Def. 3 are then checked by the procedures in Alg. 2:

• badTermination returns true if in the node set S of the constraint graph
CGB there is a node (b, ϕ) such that b corresponds to a marking M of the DPN
N with M > MF . For instance, it returns true for CGBthresh

in Fig. 4 since the
red nodes correspond to marking {p2, p3}; while it would return false for CGB.

• deadTransition returns true if there is a transition in the DPN N whose
label does not occur in CGB. For instance, the constraint graph for the DDS
Breset in Fig. 3 coincides with the graph CGB in Fig. 4, which does not contain
reset. Thus, deadTransition(CGB,Nreset) returns true.
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• For blockedState, we use the formulas blocked(b, ϕ) defined next. For
b∈B and constraint graph CGB(b) = 〈S′, γ′, s′0〉, let final(b) = {ϕ | (bF , ϕ)∈S′}
be all formulas in CGB(b) that occur together with final states. Then,

Definition 8. For CGB = (S, γ, s0) and (b, ϕ) ∈ S, let

blocked(b, ϕ) = ϕ[V /V 0] ∧ ¬
(
∃V .

∨
ψ∈final(b) ψ

)
.

Now, blockedState returns true if there is some node (b, ϕ) ∈ S in CGB such
that blocked(b, ϕ) is satisfiable. This formula expresses that the process reaches
control state b that prohibits to reach a final state: Indeed, Ψ := ∃V .

∨
ψ∈final(b) ψ

states conditions to reach a final state from b and variables assigned to V 0 (where
∃V reflects that we do not care about the final values of the data variables). Thus,
¬Ψ states that no final state can be reached, and we take the conjunction with
ϕ (with variables renamed appropriately) to combine this with the assumptions
of the current constraint graph node (b, ϕ). For instance, we can check whether
B in Fig. 3 admits a deadlock at a run the is captured by the node (p12, o= 0)
(drawn in red) of CGB in Fig. 4, as follows: There are three final nodes in
CGB(p12) in Fig. 4 labelled ϕ1

.
= (o= o0∧o0> 0∧ t= t0∧ t0> 0), ϕ2

.
= (o= o0∧

o0> 0 ∧ t0>t ∧ t6 0 ∧ t0> 0), and ϕ3
.
= (o>o0 ∧ o> 0 ∧ t0>t ∧ t6 0 ∧ t0> 0),

so final(p12) = {ϕ1, ϕ2, ϕ3}. We hence get

blocked(p12, o= 0) = (o0 = 0) ∧ ¬ (∃o t. (ϕ1 ∨ ϕ2 ∨ ϕ3))

which is simplified using quantifier elimination to (o0 = 0) ∧ (t0 6 0), and e.g.
satisfiable by α(o0) =α(t0) = 0. Thus blockedState(CGB,N ) returns true, re-
flecting the blocked sequence (1) shown at the end of Sec. 2.

Note that all checks in Alg. 2 are effective if CGB and all CGB(b) are finite.
Finally, we relate the procedures in Alg. 2 to properties of B, which together
with Lem. 1 shows that data-aware soundness of DPNs is effectively checked.

Theorem 1. Let CGB be a constraint graph for a DDS B.
(1) blockedState(CGB,B) returns true iff B has a blocked state.
(2) deadTransition(CGB,B) returns true iff N has a transition t of N such

that (b, `(t), b′) ∈ ∆ is unreachable for all b, b′ ∈ B, and
(3) badTermination(CGB,B) returns true iff some b ∈ B corresponding to M

with M >MF is reachable.

7 Implementation and Experiments

We implemented our approach in the tool ada (arithmetic DDS analyzer) in
Python; source code, benchmarks, and a web interface are available.1 The tool
takes a (bounded) DPN in .pnml format as input, and checks data-aware sound-
ness following Alg. 1 and Alg. 2. As output, it produces graphical representations
of the DDS B and the constraint graph CGB, and if data-aware soundness is vio-
lated, a witness is constructed. CVC5 (cvc5.github.io) and Z3 (z3prover.github.io),
which support all datatypes mentioned in Sec. 2.

1 https://soundness.adatool.dev

https://cvc5.github.io
https://z3prover.github.io
https://soundness.adatool.dev
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process sound time checks |V | |B| |CGB|
(1) road fines (normative) [17, Fig. 7] no P1 3.1s 3909 8 9/19 29/44
(2) road fines (mined) [16, Fig. 12.7] no P1 3.1s 3811 8 9/19 59/104
(3) road fines (mined) [13, Fig. 13] yes 2m16s 114,005 5 9/19 234/376
(4) hospital billing [16, Fig. 15.3] yes 3m1s 229,467 4 17/40 360/703
(5) sepsis (normative) [16, Fig. 13.3] yes 19s 831 3 301/1630 793/4099
(6) sepsis (mined) [16, Fig. 13.6] yes 1m43s 8085 4 301/1630 1117/5339
(7) digital whiteboard: register [16, Fig. 14.3] yes 0.1s 16 2 7/6 7/6
(8) digital whiteboard: transfer [16, Fig. 14.3] no P1 0.1s 19 3 7/6 7/6
(9) digital whiteboard: discharge [16, Fig. 14.3] yes 0.1s 30 4 6/6 7/6

(10) credit approval [6, Fig. 3] yes 1.2s 434 5 6/10 26/27
(11) package handling [8, Fig. 5] no P3 1.3s 242 5 16/28 68/67
(12) auction [9, Ex. 1.1] no P1 5.8s 1007 5 5/7 13/15

Table 1. Experiments with ada on DPNs from the literature.

As DPNs are a relatively recent framework, an extensive set of benchmarks is
still missing. To mitigate this, we have collected all available DPN examples/use
cases from the literature, and used ada to check soundness. The results are shown
in Tab. 1, which indicates data-aware soundness (and the violated property of
Def. 3), the verification time, number of SMT checks, number of variables in the
DDS B, and the sizes of B and CGB as number of nodes/transitions. All tests
were run on an Intel Core i7 (4×2.60GHz, 19GB RAM), using CVC5 as backend.

Benchmarks (1)–(3) model the handling of traffic offenses in an information sys-
tem of the Italian police; in a normative model and two versions where decision
rules were mined automatically. The former two have the same unsoundness is-
sue (see Ex. 1), related to missing guards on written variables. (4) models the
billing process in a hospital, it was mined from a real-life log with 100k traces,
discovering guards by overlapping decision mining. (5) and (6) reflect the triage
process for sepsis patients, based on a log obtained from a hospital’s ERP sys-
tem for 1,050 patients. (5) is a normative model; for (6), guards were discovered
by decision mining. (7)–(9) are activity patterns for patient logistics designed
based on domain knowledge and logs of a hospital information system. (10) is a
faithful though hand-made process of granting loans to clients of a bank. (11) is
a manually designed order-to-delivery process, obtained as a DPN translation of
a DBPMN model (a data- and decision-aware model that builds on BPMN and
DMN S-FEEL). (12) is a manually designed model for an English auction.

We stress that the benchmarks (1), (5), (7), (10), and (12) are out of reach of
the earlier approaches [13,8], as their constraint language cannot express addition
and multiplication. Moreover, while example (3) took 1.9h with the technique
of [13], soundness can be detected by ada in less than 3 minutes.

An extensive DPN benchmark set with a wide range of problem sizes is
not yet available. To provide some indications on the scalability of our method,
we therefore modified some of the above benchmarks, adding (a) up to 100
sequential control states, and (b) up to 10 data variables z1, . . . , zk for every
type, in the latter case obfuscating constraints of the form e�e′ to e = z1∧z1 =
z2 ∧ · · · ∧ zk� e′. The results are depicted in Fig. 5, where the x-axis reports the
number of added states/variables, and the y-axis the computation time.
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Fig. 5. Scalability of ada considering control-flow (a) and data variables (b).

The chart in (a) suggests that the addition of sequential tasks in the control-
flow increases the computation time only linearly. For (b), we also observe a linear
behaviour for many systems; but for benchmarks with a more complex constraint
structure such as the credit approval example, performance can be considerably
harmed. However, note that the benchmarks generated in (b) exhibit far larger
constraints than the real-world systems, and can hence be considered extreme
cases. Finally, it it interesting to observe that similar trends are obtained for (b)
when using operators other than equality in building the expanded constraints.

8 Conclusion

The presence of numerical data in data-aware process models, either designed by
hand or discovered from logs, render it highly intricate (undecidable in general)
to manually check correctness properties such as soundness. We presented the
first automatic technique that can verify data-aware soundness for DPNs with
linear arithmetic, along with a prototype implementation. Our experiments show
that the approach is effective and efficient, and can detect soundness bugs.

In future work, we aim at realizing a tighter integration between manual and
automated approaches for data-aware process discovery and correctness analysis.
Specifically, we plan to study the integration of this technique with automated
approaches for process discovery to either guarantee by design the soundness
of the discovered processes, or to provide specific indications on how to repair
them. We also intend to deepen our understanding of the scalability of the ap-
proach starting from the preliminary evaluation presented here, with the goal
of isolating the main sources of computational complexity, and of incorporating
specific methods to handle them. Finally, we hope that having a solid founda-
tional framework paired with a proof-of-concept IT artefact will trigger empirical
research focussed on on-field validation of soundness for data-aware processes.
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19. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Comptes Rendus du I congres de Mathem. des Pays Slaves. pp. 92–101 (1929)

20. Reichert, M.: Process and data: Two sides of the same coin? In: OTM 2012. LNCS,
vol. 7565, pp. 2–19 (2012)

21. Ritter, D., Rinderle-Ma, S., Montali, M., Rivkin, A.: Formal foundations for re-
sponsible application integration. Inf. Syst. 101, 101439 (2021)

22. Sidorova, N., Stahl, C.: Soundness for resource-constrained workflow nets is decid-
able. IEEE Trans. Syst. Man Cybern. Syst. 43(3), 724–729 (2013)

23. Snoeck, M.: Enterprise Information Systems Engineering - The MERODE Ap-
proach. The Enterprise Engineering Series, Springer (2014)

24. Snoeck, M., De Smedt, J., De Weerdt, J.: Supporting data-aware processes with
MERODE. In: Proc. 22nd BPMDS. LNBIP, vol. 421, pp. 131–146 (2021)


	Soundness of Data-Aware Processes with Arithmetic Conditions 

