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Abstract. Logically constrained rewrite systems constitute a very gen-
eral rewriting formalism that can capture simplification processes in var-
ious domains as well as computation in imperative programs. In both of
these contexts, nontermination is a critical source of errors. We present
new criteria to find loops in logically constrained rewrite systems which
are implemented in the tool Ctrl. We illustrate the usefulness of these
criteria in three example applications: to find loops in LLVM peephole
optimizations, to detect looping executions of C programs, and to estab-
lish nontermination of integer transition systems.
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1 Introduction

Rewriting in presence of side constraints captures simplification processes in var-
ious areas, such as expression rewriting in compilers, theorem provers, or SMT
solvers [11,14,15,17]. But also computations in an imperative program can be
seen as rewrite sequences according to a constrained rewrite system describ-
ing the control flow graph [7]. In both cases the imposed side constraints can
typically be expressed as formulas over a decidable logic. Logically constrained
term rewrite systems (LCTRSs) [12] formalize a very general rewriting mech-
anism that can express both of these settings, as well as earlier formalisms of
constrained rewriting (cf. [12]). Side constraints of LCTRSs can employ an arbi-
trary first-order logic which contains propositional logic and equality, though
their application for practical analysis tasks requires decidability of the logic
under consideration. But thanks to the impressive progress of SMT solving in
the last two decades, we can use theories including, for instance, integer as well
as bitvector arithmetic and arrays. This renders LCTRSs a powerful analysis
tool in a wide range of areas, including program verification [7].
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Termination is a key property of simplification and computation processes,
and loops are the most common violation thereof. We consider an example from
the field of compiler optimizations.

Example 1. The Instcombine pass in the LLVM compilation suite performs peep-
hole optimizations to simplify expressions in the intermediate representation.
The current optimization set contains over 1000 simplification rules to e.g.
replace multiplications by shifts or perform bitwidth changes. About 500 of them
have recently been translated into the domain-specific language Alive [14,15]. The
following simplification is an example rule in this format.

Name: MulDivRem 9
Pre: C < 0 && isPowerOf2(abs(C))
%Op0 = sub %Y, %X
%r = mul %Op0, C

=>
%sub = sub %X, %Y
%r = mul %sub, abs(C)

It consists of a precondition labelled Pre, a left-hand side (the expression
before the arrow =>), and the right-hand side (the expression after the arrow).
Both expressions are defined by a sequence of variable assignments. The last
variable on each side—in this case %r—identifies the pattern to be replaced.
This simplification can also be represented by the following LCTRS rule, using
a side constraint over bitvector arithmetic:

mul(sub(y, x), c) → mul(sub(x, y), abs(c)) [c <s #x0 ∧ isPowerOf2(abs(c))] (1)

The Instcombine optimization suite is community-maintained, and unintended
interference of rules may occur. For instance, for 16-bit integers where #x8000 is
the smallest representable integer value, Rule (1) in combination with constant
folding admits the following loop since abs(#x8000) evaluates to #x8000:

mul(sub(x, x),#x8000) → mul(sub(x, x), abs(#x8000)) → mul(sub(x, x),#x8000)

In this paper we present new criteria to recognize loops in LCTRSs. We imple-
mented them in the Constrained Rewrite tooL Ctrl [13], which can now for
instance detect the loop shown in Example 1. In order to illustrate the useful-
ness of our criteria, we discuss applications in three example domains: (1) finding
loops in the Instcombine optimization suite, (2) detecting loops in C programs,
and (3) establishing nontermination of integer transition systems.

The remainder of this paper is structured as follows. In Sect. 2 we recall
preliminaries about logically constrained rewrite systems. We present our non-
termination criteria in Sect. 3. Afterwards, we outline our implementation within
the tool Ctrl in Sect. 4, and report on detecting loops in some example application
areas in Sect. 5. In Sect. 6 we conclude.
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2 Preliminaries

We assume familiarity with term rewrite systems [1], but briefly recapitulate the
notion of logically constrained rewriting [7,12] that our approach is based on.

We consider an infinite set of variables V and a sorted signature F = Fterms∪
Ftheory such that T (F ,V) denotes the set of terms over this signature. Symbols in
Fterms are called term symbols, while Ftheory contains theory symbols. A term in
T (Ftheory,V) is called a theory term. For a non-variable term t = f(t1, . . . , tn),
we write root(t) to obtain the top-most symbol f . A position p is an integer
sequence used to identify subterms of a given term. The subterm of t at position
p is defined as t|ε = t, and if t = f(t1, . . . , tn) then t|ip = ti|p. The result of
replacing the subterm of a term t at position p by s is denoted t[s]p. A context
C is a term with a single occurrence of a designated constant �, and we write
C[t] to denote the term obtained by replacing � in C by t. A substitution σ is a
mapping from variables to terms. We write Dom(σ) and Ran(σ) for its domain
and range, while tσ denotes the application of σ to a term t.

Terms over logical symbols are associated with a fixed semantics. To this
end, we assume a mapping I that assigns to every sort ι occurring in Ftheory

a carrier set I(ι), and an interpretation J that assigns to every symbol f ∈
Ftheory a function fJ . For every sort ι occurring in Ftheory we assume a set
Valι ⊆ Ftheory of value symbols, such that all c ∈ Valι are constants of sort ι and
J constitutes a bijective mapping between Valι and I(ι). Hence there exists a
constant symbol for every value in the carrier set. We write Val for

⋃
ι Valι. The

interpretation J naturally extends to theory terms without variables by setting
[f(t1, . . . , tn)]J = fI([t1]J , . . . , [tn]J ). Theory symbols and term symbols are
supposed to overlap only on values, i.e., Fterms ∩Ftheory ⊆ Val holds. We assume
a sort bool such that I(bool) = B = {�,⊥} with values Valbool = {true, false}
such that trueJ = �, and falseJ = ⊥. Moreover we consider a theory symbol
≈ for equality. Theory terms of sort bool are called constraints. A substitution
σ which satisfies σ(x) ∈ Val for all x ∈ Dom(σ) is also called an assignment.
A constraint ϕ is valid if [ϕγ]J = � for all assignments γ, and satisfiable if
[ϕγ]J = � for some assignment γ.

Logically Constrained Rewriting. We consider constrained rewriting as developed
in [7,12]. A constrained rewrite rule is a triple � → r [ϕ] where �, r ∈ T (F ,V),
� �∈ V, ϕ is a constraint, and root(�) ∈ Fterms \ Ftheory. If ϕ = true then the
constraint is omitted, and the rule denoted as � → r. A set of constrained
rewrite rules is called a logically constrained term rewrite system (LCTRS for
short).

In order to define rewriting using constrained rewrite rules, a substitution
σ is said to respect a constraint ϕ if ϕσ is valid and σ(x) ∈ Val for all x ∈
Var(ϕ). A calculation step s →calc t satisfies s = C[f(s1, . . . , sn)] for some f ∈
Ftheory \ Val, t = C[u], si ∈ Val for all 1 � i � n, and u ∈ Val is the value
symbol of [f(s1, . . . , sn)]J . In this case f(x1, . . . , xn) → y [y ≈ f(x1, . . . , xn)]
is a calculation rule, where y is a variable different from x1, . . . , xn. A rule step
s →�→r [ϕ] t satisfies s = C[�σ], t = C[rσ], and σ respects ϕ. For an LCTRS
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R, we also write →rule, R to refer to the relation {→α}α∈R, and denote →calc ∪
→rule, R by →R. The subscript R is dropped if clear from the context.

Example 2. Consider the sorts int and bool, and let Ftheory consist of symbols ·,
+, −, �, and � as well as values n for all n ∈ Z, with the usual interpretations
on Z. Let Fterms = Val ∪ {fact}. The LCTRS R consisting of the rules

fact(x) → 1 [x � 0] fact(x) → fact(x − 1) · x [x − 1 � 0]

admits the following rewrite steps:

fact(2) →rule fact(2 − 1) · 2 (as 2 − 1 � 0 is valid)
→calc fact(1) · 2 →rule (fact(1 − 1) · 1) · 2 (as 1 − 1 � 0 is valid)
→calc (fact(0) · 1) · 2 →rule (1 · 1) · 2 (as 0 � 0 is valid)
→+

calc 2

An LCTRS R is terminating if →R is well-founded. A loop is a rewrite
sequence of the form t →+

R C[tσ]. Due to the sequence t →+
R C[tσ] →+

R
C2[tσ2] →+

R · · · existence of a loop implies nontermination. For example, a
rewrite rule f(x, y) → h(f(−x, g(y))) [x � 0] gives rise to the loop where
t = f(0, y), C = h(�), and σ = {y �→ g(y)}:

f(0, y) →rule h(f(−0, g(y))) →calc h(f(0, g(y))) →rule h(h(f(−0, g(g(y))))) →calc · · ·

Rewriting Constrained Terms. The notion of rewriting for unconstrained terms
considered so far is used to model the actual simplification and computation
processes in practice. But for the sake of analysis it is convenient to also define a
notion of rewriting on constrained terms, for instance to capture the composition
of rewrite rules.

To that end, a constrained term is a pair s [ϕ] of a term s and a constraint ϕ.
Two constrained terms s [ϕ] and t [ψ] are equivalent, denoted by s [ϕ] ∼ t [ψ], if
for every substitution γ respecting ϕ there is some substitution δ that respects
ψ such that sγ = tδ, and vice versa. For example, fact(x) · x [x = 1 ∧ x <
y] ∼ fact(1) · y [y > 0 ∧ y < 2] holds, but these terms are not equivalent to
fact(x) · y [x = y] or fact(1) [true]. Next we define rewriting on constrained
terms.

Definition 1

– A calculation step s [ϕ] →calc t [ϕ ∧ x ≈ f(s1, . . . , sn)] needs to satisfy
s = C[f(s1, . . . , sn)] for some f ∈ Ftheory \ Fterms and t = C[x] such that
s1, . . . , sn ∈ Var(ϕ) ∪ Val and x is a fresh variable.

– A constrained rewrite rule α : � → r [ψ] admits a rule step s [ϕ] →α t [ϕ] if
ϕ is satisfiable, s = C[�σ], t = C[rσ], σ(x) ∈ Val ∪ Var(ϕ) for all x ∈ Var(ψ),
and ϕ ⇒ ψσ is valid.

Given an LCTRS R, we again write →rule, R for {→α}α∈R. The main rewrite
relation →R on constrained terms is defined as ∼ · (→calc ∪ →rule, R) · ∼.
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For example, the LCTRS from Example 2 and the constraint ϕ = x � 1∧y �
0 admit the rule step fact(x + y) [ϕ] →rule fact(x + y − 1) · (x + y) [ϕ], while
fact(x + y) [ϕ] →calc fact(z) [ϕ ∧ z ≈ x + y] is a possible calculation step.

We next define narrowing on constrained terms (cf. the notion of chains [4]).

Definition 2. A constrained rewrite rule α : � → r [ψ] admits a narrowing step
s [ϕ] �μ

α,p t [ϕ′] if s = s[s′]p, the terms s′ and � are unifiable with mgu μ, the
resulting term is t = (s[r]p)μ, ϕ′ = (ϕ ∧ ψ)μ, and ϕ′ is satisfiable.

We also write s [ϕ] μ
α �t [ϕ′] if α : � → r [ψ] admits a step t [ϕ′] �μ

r→� [ψ]

s [ϕ]. The following lemma shows the crucial correspondence between narrowing
and rewriting, which ensures correctness of our loop detection shown in Sect. 4.

Lemma 1 (Lifting Lemma). Suppose α : � → r [ψ] admits a narrowing step
s [ϕ] �μ

α,p t [ϕ′], where ϕ′ = (ϕ ∧ ψ)μ. Then sμ [ϕ′] →α,p t [ϕ′].

Proof. We have sμ|p = �μ and can perform a rewrite step because ϕ′ = (ϕ∧ψ)μ
is satisfiable, and ϕ′ ⇒ ψμ is valid. The result is indeed sμ[rμ] = (s[r]p)μ = t. ��

3 Loop Criteria

Our aim is to detect loops in LCTRSs. More precisely, given an LCTRS R we
want to find rewrite sequences t →+

R C[tσ] on unconstrained terms. A natural
approach to this end from standard rewriting is unfolding [19]: one tries to
compose (instances of) rewrite rules such that the final term of the resulting
rewrite sequence contains (an instance of) the initial term. For our setting, this
requires to rewrite constrained terms. But a rewrite sequence t [ϕ] →+

R C[tσ] [ψ]
on constrained terms where the final term contains the initial term need not
imply a loop: this depends on whether the constraints can remain satisfied after
repeated execution of the respective rewrite steps. In this section we consider
a rewrite sequence t [ψ] →+

R C[tσ] [ψ] and look for sufficient criteria such that
these steps give rise to a loop. If there exists a ψ as above then we abbreviate
this by t →+

ψ,R C[tσ] and call it a loop candidate.
The following criterion was presented in [18, Theorem 2].

Lemma 2. Let R be an LCTRS, and ψ a constraint. Suppose t →+
ψ,R C[tσ] for

a term t, context C, and substitution σ such that σ(x) ∈ T (Ftheory,V) for all
x ∈ Var(ψ), ψ is satisfiable, and ψ =⇒ ψσ valid. Then R is nonterminating.

As a nontermination criterion, Lemma 2 has the disadvantage that it cannot
detect loops which occur only for specific input values, such as the loop from
Example 1. We next propose two criteria which remedy this shortcoming.

Lemma 3. Let R be an LCTRS, and ψ a constraint. Suppose that t →+
ψ,R C[tσ]

for some term t, context C, and substitution σ such that σ(x) ∈ T (Ftheory,V)
for all x ∈ Var(ψ), and ψ ∧

∧
y∈Dom(σ) y ≈ yσ is a constraint satisfied by some

assignment α. Then R is nonterminating because of the loop tα →+
R C[tσα].
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Proof. If ψ ∧
∧

y∈Dom(σ) y ≈ yσ is satisfied by an assignment α then ψα is valid,
and [yα]J = [yσα]J for all y ∈ Dom(σ). Thus tσα →∗

calc tα such that there is a
loop tα →+

R C[tσα] →∗
calc C[tα] →+

R · · ·. ��

Example 3. Returning to Example 1, the two rewrite steps

mul(sub(y, x), c) [ϕ] →rule mul(sub(x, y), abs(c)) [ϕ] →calc mul(sub(x, y), c′) [ψ]

constitute a loop candidate, where ϕ = c <s #x0000 ∧ isPowerOf2(abs(c)) and
ψ = ϕ ∧ c′ = abs(c). We thus have t [ψ] →+

R C[tσ] [ψ] for t = mul(sub(y, x), c),
C = �, and σ = {y �→ x, c �→ c′}, such that σ(z) is a logical term for all z in
ψ. The formula ψ ∧ x = y ∧ c = c′ is satisfiable by any assignment such that
α(x) = α(y) and α(c) = α(c′) = #x8000, which exhibits the loop in Example 1:

mul(sub(x, x),#x8000) → mul(sub(x, x), abs(#x8000)) → mul(sub(x, x),#x8000)

The criterion of Lemma 3 is rather restrictive in that it demands the start-
ing term to occur again as a subterm after some (calculation) steps. The next
criterion adds some flexibility in this respect.

Lemma 4. Let R be an LCTRS, and ψ a constraint. Suppose that t →+
ψ,R C[tσ]

for some term t, context C, and substitution σ such that σ(x) ∈ T (Ftheory,V) for
all x ∈ Var(ψ). Suppose Dom(σ) = {y1, . . . , yn}, and let ρ = {y1 �→ z1, . . . , yn �→
zn} be a renaming to fresh variables z1, . . . , zn.

If ∀y1 . . . yn.(ψ =⇒ ψσ) ∧ ψρ is satisfiable by α then R is nonterminating
because of the loop tρα →+

R C[tσρα].

Proof. We write y for y1 . . . yn and assume that χ = ∀y.(ψ =⇒ ψσ) ∧ ψρ is
satisfied by some assignment α, so Ran(α) ⊆ Val. We can assume Dom(α)∩{y} =
∅ since there are no free occurrences of yi in χ. There must be some assignment
β such that α = β � α|{zi}, and we abbreviate γ = ρα|{zi}. By assumption ψρα
holds, which coincides with ψβγ because Ran(β) ⊆ Val and Dom(β) ∩ {y} = ∅.
Moreover ∀y.(ψ =⇒ ψσ)βα|{zi} holds, and we have

(∀y.(ψ =⇒ ψσ)βα|{zi}) = (∀y.(ψβ =⇒ ψσβ))α|{zi} as Dom(β) ∩ {y} = ∅

= (∀y.(ψβ =⇒ ψσβ)) because z are fresh
= (∀y.(ψβ =⇒ ψβσ)) as Dom(β) ∩ {y} = ∅

Thus ψβγ′ implies ψβσγ′ for all substitutions γ′ with Dom(γ′) = {y}. Since
Dom(σkγ) = {y} the constraint ψβσkγ = ψσkβγ = ψσkρα holds for all k � 0.
Hence we have the loop

tρα →+
R C[tσρα] →+

R C2[tσ2ρα] →+
R · · · ��

Example 4. Consider the following LCTRS R0 with constraints over the integers:

f(x, y) → f(x + 1 − y, y) − 1 [y �= 1 ∧ x � 0]
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The rule constitutes a loop candidate: We have t →+
ψ,R C[tσ] for t = f(x, y),

C = � − 1, and σ = {x �→ x + 1 − y} with Dom(σ) = {x}. The formula

∀x (y �= 1 ∧ x � 0 =⇒ (y �= 1 ∧ (x + 1 − y) � 0)) ∧ y �= 1 ∧ z � 0

is satisfied e.g. by the assignment α(y) = α(z) = 0. Thus we can detect the loop

f(0, 0) →R f(0 + 1 − 0, 0) →+
calc f(1, 0) →R f(1 + 1 − 0, 0) →+

calc f(2, 0) → · · ·

Note that this loop is not captured by the criteria in Lemmas 2 and 3.

It is clear that Lemma 4 subsumes Lemma 2— satisfiability of ψ and validity
of ψ =⇒ ψσ in Lemma 2 implies satisfiability of ∀y1 . . . yn.(ψ =⇒ ψσ) ∧ ψρ in
Lemma 4. The LCTRS R0 from Example 4 indicates the existence of an example
for which Lemma 4 can detect a loop but Lemmas 2 or 3 do not. The following
example shows the remaining relationship between Lemmas 2, 3, and 4.

Example 5. A loop of the LCTRS R1 = { f(x) → f(x) [x � 0] } can be detected
by Lemmas 2, 3, and 4. A loop of the LCTRS R2 = { f(x) → f(x + 1) [x � 0] }
can be detected by Lemmas 2 and 4 but not by Lemma 3. A loop of the LCTRS
R3 = { f(x, y) → f(x + y, y) [x � 0] } can be detected by Lemmas 3 and 4 but
not by Lemma 2. A loop of the LCTRS R4 = { f(x, y) → f(y + 1, x − 1) [x �
0 ∧ y � 0] } can be detected by Lemma 3 but not by Lemmas 2 or 4.

The relationship between the different criteria is summarized in Fig. 1.

Lemma 2

Lemma 3Lemma 4

R1R2 R3 R4R0

Fig. 1. Relationship between the criteria implied by Lemmas 2, 3, and 4.

4 Implementation

We extended the tool Ctrl [13] by nontermination techniques that exploit the
criteria presented in Sect. 3. Optionally a starting term can be given, i.e., two
modes are supported:

(a) Given an LCTRS R, find a loop t →+
R C[tσ].

(b) Given an LCTRS R and a starting term u, find a loop reachable from u,
i.e., a sequence u →∗

R t →+
R C[tσ].
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To that end our implementation searches loop candidates t →+
ϕ,R C[tσ] which

satisfy the criteria in Lemmas 2–4. An input file in the ctrs format specifies the
logical theory to be used, the signature, the rewrite rules, and a query to fix the
problem statement for Ctrl, i.e., the requested analysis or transformation task.
To support nontermination analysis, we provide loops as a query in input files:

QUERY loops t

where the optional argument t is a term from which a loop should be reachable.
Ctrl offers theory specifications for integers and arrays, and we added bitvectors
for this work. Alternatively, a user-defined theory specification can be used.

We next describe how our implementation detects loops. Following the idea
of unfolding [19], we construct sequence tuples (s → t [ψ], S) where s → t [ψ] is
a constrained rewrite rule, S = [(α1, p1), . . . , (αk, pk)], αi is a rule of the form
�i → ri [ϕi] and pi are positions for all 0 � i � k such that there is the rewrite
sequence s [ψ] →α1,pi

· · · →αk,pk
t [ψ].. In either of the modes (a) and (b), we

proceed in five steps as follows.

(1) Using the dependency pair (DP) framework present in Ctrl [12], the problem
is split into strongly connected components of the dependency graph. This
results in a set of DP problems of the form (P,R), where P is a set of depen-
dency pairs and R the given LCTRS. (Basically this amounts to splitting the
problem into rules P that are applied at the root of a term and rules R that
can be applied below. Then potential cycles in the call graph are identified,
and only upon these the analysis continues; see [12] for details.)
The following steps are then performed for each of these DP problems:

(2) The set of initial sequence tuples T0 is determined. In case of (a), we take
the set of all single-step sequences (� → r [ϕ], [(� → r [ϕ], ε)]) such that
� → r [ϕ] ∈ P. In case of (b), this set is restricted to those tuples where a
rewrite sequence u →ϕ,R v[�] was found.

(3) Given tuples Ti, we define T f
i+1 for forward and T b

i+1 for backward unfolding:

T f
i+1 = {(sτ → u [χ], Sf ) | (s → t [ψ], S) ∈ Ti, β ∈ Q and t [ϕ] �τ

β,q u [χ]}
T b

i+1 = {(uτ → t [χ], Sb) | (s → t [ψ], S) ∈ Ti, β ∈ Q and u [ϕ] τ
β,q �s [χ]}

Here Q abbreviates P ∪R, Sf = S ++ [(β, q)] and Sb = [(β, q)] ++ S, where
++ denotes list concatenation.

(4) Let T =
⋃

i�n Ti for some n. By the construction of Ti and Lemma 1, we
have s [ψ] →+

R∪P t [ψ] for all (s → t [ψ], S) ∈ T . If t = C[s′] for some C and
s′ such that s and s′ are unifiable with mgu μ and ψμ is satisfiable, then
sμ [ψμ] →+

R∪P C[sμ] [ψμ] is a loop candidate.
(5) We finally use Lemmas 2, 3, and 4 to check whether there are input values

for which the loop candidates correspond to actual loops.

Since it is known that forward and backward unfolding are incomparable
in general [19], both methods are supported. The tool as well as input files
corresponding to the examples used in this paper can be found on-line1.
1 http://cl-informatik.uibk.ac.at/users/swinkler/lctrs loops.

http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_loops
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5 Applications

We now illustrate the loop support of Ctrl in three different application domains.

LLVM Instcombine Simplifications

We transformed the around 500 simplifications in the Alive language mentioned
in Example 1 into LCTRSs using bitvector theory as background logic. These
simplifications are split into domains. We tested Ctrl on the simplification sets
for addition and subtraction, multiplication and division, shifts, bitwise logical
operations, and select operations, as well as on their union. Table 1 summarizes
our results. The columns refer to the different domains, and loops refers to the
set of rules involved in all loops found in the work [16] discussed below. The rows
indicate how many loops of length at most 3 were found by Ctrl using forward
(fw) and backward (bw) unfolding, respectively, and how much time was required.
In general forward unfolding seems to be more useful than backward unfolding.

Table 1. Instcombine loops found via forward (fw) and backward (bw) unfolding.

# rules add-sub mul-div shift and-or select loops all

66 118 75 180 85 43 518

fw 3-loops 4 8 4 22 2 40 51

Time (s) 16 80 9 3601 24 25 >32k

bw 3-loops 4 8 4 10 2 27 TO

Time (s) 29 727 9 8400 21 24 TO

A dedicated tool alive-loops to detect loops in the Instcombine opti-
mizations was presented in [16]. We briefly compare our criteria to their app-
roach: First of all, we found the same loops with Ctrl that were exhibited by
alive-loops, modulo combination and nesting of loops. But the loop check
applied in alive-loops is different: It amounts to the search for a loop candi-
date t →+

ψ,R C[tσ] such that ψ =⇒ ψσ is satisfiable. While this is obviously a
necessary condition it is in general not sufficient:

Example 6. As an (artificial) example, consider the constrained rewrite rule
and(#x0, x) → and(#x0, x �u #x1) [x > #x0]. It gives rise to a loop candidate
t →+

ψ,R tσ where ψ = x > #x0, t = and(#x0, x), and σ = {x �→ x �u #x1}.
The constraint ψ =⇒ ψσ is satisfiable. But logically shifting x to the right
will eventually result in a bit vector #x0000, hence no such loop exists. Indeed
alive-loops finds a spurious loop in this example, but Ctrl does not.

By the correctness proofs of Lemmas 3 and 4, such false positives can be excluded
for Ctrl. Moreover alive-loops is limited in that it restricts to loop candidates
which are not size-increasing.

We remark that not all loops found by Ctrl or alive-loops can actually
occur in the LLVM Instcombine pass since the rule set is applied with a particular
strategy, such that certain optimizations can “shadow” other ones. Thus it needs
to be checked by hand whether the detected potential loops can actually occur.
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Loops in Integer Transition Systems

Integer term rewriting has been introduced as a rewriting formalism which
natively supports integer operations, to be applied to rewrite-based program
analysis [6]. The integer transition system Velroyen08-alternKonv.jar-obl-8
from the Termination Problem Database 9.02 corresponds to the following
LCTRS:

f1 0 main(x, y) → f81 0(x′, y′) [ x > 0 ∧ y > −1 ∧ y = x′ ] (1)
f81 0(x, y) → f81 0(x′, y′) [ x < 0 ∧ x > −3 ∧ x + 2 = x′ ] (2)
f81 0(x, y) → f81 0(x′, y′) [ x > 0 ∧ x < 3 ∧ x − 2 = x′ ] (3)
f81 0(x, y) → f81 0(x′, y′) [ x < −2 ∧ x < −1 ∧ x < 0 ∧ −x − 2 = x′ ] (4)
f81 0(x, y) → f81 0(x′, y′) [ x > 2 ∧ −x + 2 = x′ ] (5)

init(x, y) → f1 0 main(x′, y′) (6)

where the starting term is of the form init(x, y). It admits the following rewrite
steps which contain a loop:

init(1, 1)
(6)−−→ f1 0 main(1, 1)

(1)−−→ f81 0(1,−1)
(3)−−→ f81 0(−1, 0)

(2)−−→ f81 0(1,−1)

(where the arrows are decorated with the applied rule). Ctrl can easily show
nontermination within less than 2 seconds by exploiting Lemma 3. This is also
the case for the similar system alternKonv rec, while in the Termination Com-
petition 20173 both of these problems remained unsolved.

Loops in C Programs

Consider the following C program implementing binary search [10]:

int bsearch(int a[], int k, unsigned int lo, unsigned int hi) {
unsigned int mid;
while (lo < hi) {

mid = (lo + hi)/2;
if (a[mid] < k)

lo = mid + 1;
else if (a[mid] > k)

hi = mid - 1;
else

return mid;
}
return -1;

}

2 http://termination-portal.org/wiki/TPDB.
3 http://www.termination-portal.org/wiki/Termination Competition 2017.

http://termination-portal.org/wiki/TPDB
http://www.termination-portal.org/wiki/Termination_Competition_2017
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It admits a loop for inputs lo=1 and hi=UINT MAX if a[0] < k. Abstracting from
the array accesses, this program can be represented by the following LCTRS:

bsearch(k1, lo1, hi1) → u2(k1, lo1, hi1, rnd1)
u2(k1, lo1, hi1,mid2) → u3(k1, lo1, hi1, (lo1 + hi1) /u #x02) [ lo1 <u hi1 ]
u3(k1, lo1, hi1,mid2) → u5(k1, (mid2 + #x01), hi1,mid2) [ mid2 <u k1 ]
u3(k1, lo1, hi1,mid2) → u6(k1, lo1, (mid2 − #x01),mid2) [ mid2 � k1 ∧ mid2 > k1 ]
u6(k1, lo1, hi1,mid2) → u9(k1, lo1, hi1,mid2)
u3(k1, lo1, hi1,mid2) → return(mid2) [ mid2 � k1 ∧ mid2 � k1 ]
u5(k1, lo1, hi1,mid2) → u9(k1, lo1, hi1,mid2)
u9(k1, lo1, hi1,mid2) → u10(k1, lo1, hi1,mid2)

u10(k1, lo1, hi1,mid2) → u2(k1, lo1, hi1,mid2)
u2(k1, lo1, hi1,mid2) → return(#xff) [ lo1 �u hi1 ]

Ctrl can prove existence of a loop that is reachable from a term of the form
bsearch(x, y, l, h) below one second, using Lemma 3.

6 Conclusion

We presented new criteria to recognize loops in LCTRSs, and implemented these
in the constrained rewrite tool Ctrl. In order to demonstrate applicability of such
nontermination support, we investigated three example domains.

For the case of LLVM Instcombine optimizations, we confirmed all loops
found by the tool alive-loops [16], and argued that in contrast to this previous
work our criteria do not give rise to false positives. We moreover showed how Ctrl
can be used to detect loops in a C program and in integer transition systems.

Extensive work on nontermination detection has been done in the past for
both domains, c.f. [2,5,10] and [3,9], for example. A thorough evaluation of our
criteria by means of comparison with tools such as [2,3,9] is left for future work.
Rather than claiming our implementation superior to other tools, we consider
the work presented in this paper a proof of concept that nontermination crite-
ria for LCTRSs are applicable to a wide range of domains. In contrast to tools
designed for integer transition systems, C programs, or LLVM Instcombine opti-
mizations, we can treat all these applications uniformly with our criteria: Due to
the generality of LCTRSs, the same implementation can be applied to a variety
of background theories such as integer or bitvector arithmetic or arrays.

In future work we want to investigate further application domains such as
simplifications performed in the preprocessing phase of SMT solvers [8,17]. More-
over, it would be interesting to find criteria for nonlooping nontermination of
LCTRSs.

Acknowledgements. The authors thank the anonymous referees for their helpful
comments.
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