
Submitted to:
ThEdu 2019

c© S. Winkler and A. Middeldorp
This work is licensed under the
Creative Commons Attribution License.

Tools in Term Rewriting for Education

Sarah Winkler
Università di Verona, Italy

sarahmaria.winkler@univr.it

Aart Middeldorp
University of Innsbruck, Austria

aart.middeldorp@uibk.ac.at

Term rewriting is a Turing complete model of computation. When taught to students of computer
science, key properties of computation as well as techniques to analyze programs on an abstract level
are conveyed. This paper gives a swift introduction to term rewriting and presents several automatic
tools to analyze term rewrite systems which were developed by the Computational Logic Group at
the University of Innsbruck. These include the termination tool TTT2, the confluence prover CSI, the
completion tools mkbTT and KBCV, the complexity tool TcT, the strategy tool AutoStrat, as well
as FORT, an implementation of the decision procedure for the first-order theory for a decidable class
of rewrite systems. Besides its applications in research, this software pool has also proved invaluable
for teaching, e.g., in multiple editions of the International Summer School on Rewriting.

1 Introduction

Rewriting is a pervasive concept in mathematics, computer science, and other areas: Simplification
of expressions constitutes rewriting, the execution of a program can be seen as a rewrite sequence on
program states, and in fact probably almost any development according to a set of fixed rules can be
considered rewriting. In term rewriting, we assume that the objects which are rewritten are terms. This
yields a powerful formalism which is crucial for simplification in automated theorem proving, it provides
tools to analyze security protocols, it can be used to model the development of RNA structures, but it
is also a versatile method in program verification, to name only a few application areas. In fact, term
rewriting is a Turing-complete model of computation, and provides methods to investigate important
properties of computation and simplification processes on an abstract level [4, 32].

This includes ubiquituous properties related to termination, determinism, and complexity. As a sim-
ple but powerful model of computation, term rewriting can in particular also convey program analysis
on an abstract level to students of computer science and related fields. We illustrate some properties by
means of a simple example.

Example 1.1 (Coffee Bean Game [6]). Coffee beans come in two kinds called black (•) and white (◦). A
two-player game starts with a random sequence of black and white beans. In a move, a player must take
two adjacent beans and put back one bean, according to the following set of rules R1:

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

The player who puts the last white bean wins. For instance, the following is a valid game:

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Tools in Term Rewriting for Education

• ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
• ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
• ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
• ◦ • ◦ • • ◦ • ◦ ◦ • ◦
• ◦ • ◦ • • ◦ • ◦ • ◦
• • ◦ • • ◦ • ◦ • ◦
• • ◦ • • ◦ • ◦ •
• • ◦ • • ◦ • •
• • ◦ • • ◦ ◦
• • ◦ • • ◦
• • ◦ • •
• • ◦ ◦
• • ◦
• •
◦

In this case the player who started lost, since the last white bean was put in the 14th move. A number
of interesting questions can be asked about such a game: Which moves should the respective players
perform to win? Are there game states which are equivalent in the sense that they offer the same oppor-
tunities to each of the players? In short, is there a winning strategy for one of the players? While it is
obvious that the above game terminates, is this still the case for the modified game using the rules R2:

• • → ◦ ◦ ◦ ◦ ◦ ◦ → ◦ • ◦ → ◦ ◦ ◦ • ◦ • → •

and if yes, how many steps are needed?

This paper advocates rewriting to answer these questions and many others that we will motivate by
examples. As manual analysis of term rewrite systems often turns out to be tedious, a variety of tools has
been developed in the last two decades which perform powerful analysis tasks automatically. We here
focus on tools that have been developed at the Computational Logic group at the University of Innsbruck
since these are the tools we are most familiar with.

This paper gives a concise introduction to term rewriting. We introduce some of the most widely
investigated properties of term rewrite systems, and motivate their relevance by examples from different
domains. Rather than elaborating the often complicated methods developed to analyze these properties,
we show how tools can effectively be used to inspect term rewrite systems automatically. In this spirit
we discuss termination (Section 3), confluence (Section 4), completion as a means to decide the validity
problem (Section 5), the first order theory of rewriting (Section 6), evaluation strategies (Section 7), and
derivational complexity (Section 8). We conclude in Section 9 with remarks on current research.

2 Preliminaries

We assume basic familiarity with term rewriting [4, 32], but recall some key notions and notation. Given
a signature F and a set of variables V , we consider the set of terms T built up from F and V . Positions
are strings of positive integers which are used to address subterms. We write t|p for the subterm of t at
position p and t[u]p denotes the term that is obtained from t by replacing its subterm t|p with u. A
substitution σ is a mapping from variables to terms such that σ(x) 6= x for only finitely many x. An
equation is a pair of terms s ≈ t, and a rewrite rule is a pair of terms denoted as `→ r such that ` /∈ V
and all variables in r also occur in `. An equational system (ES) is a set of equations, while a term rewrite
system (TRS) refers to a set of rewrite rules.

S. Winkler and A. Middeldorp 3

The rewrite relation induced by a TRS R is defined as s→R t if and only if s|p = `σ and t = s[rσ]p for
some position p, substitution σ , and rewrite rule `→ r in R. The relations↔R,→+

R , and→∗R denote the
symmetric, transitive, and reflexive transitive closure of→R, respectively, while the reflexive, symmetric,
and transitive closure of→R is denoted↔∗R and called conversion. Two terms s and t are convertible if
there exists a conversion s↔∗R t. We further use ↓R as abbreviation for the joinability relation →∗

R · →∗R
and ↑R as abbreviation for the meetability relation →∗R · →∗

R . Here · denotes relation composition. A
normal form with respect to a TRS R is a term t such that there is no term s with t →R s. We also write
u→!

R t if u→∗R t and t is a normal form.

Some further concepts will be introduced in later sections when they are needed.

3 Termination

Termination is very often a desired feature of rewrite systems, and thus one of the most studied properties.

Definition 3.1. A TRS R is terminating if there is no infinite rewrite sequence t0→R t1→R t2→R · · · .
Example 3.1. We revisit Example 1.1 from the introduction. It is obvious that the TRS R1 terminates
since the number of beans decreases by one with every move. Though the case of R2 is less obvious, it
turns out that also this TRS terminates. Many different techniques can be harnessed to show this. Here
we use this example to illustrate a popular technique to show termination based on interpretations.

Suppose we take as carrier set the natural numbers and use ◦A(x) = x+ 1 and •A(x) = 4x+ 1 as
interpretations. The terms in the four rewrite rules

•(•(x))→◦(◦(◦(◦(x)))) ◦(◦(x))→◦(x) •(◦(x))→◦(◦(◦(•(x)))) ◦(•(x))→•(x)

then correspond to the following polynomials, where independent of the value of x the left-hand side is
always greater than the right-hand side:

16x+5 >N x+4 x+2 >N x+1 4x+5 >N x+4 4x+2 >N 4x+1

Since every rewrite step results in a strict decrease, and >N is a well-founded order, this linear polynomial
interpretation shows that no infinite rewrite sequence can possibly exist.

TTT2 [14] is a tool to show termination of TRSs, available both via a web interface and as a stand-
alone executable.1 It is beyond the scope of this paper to describe all implemented techniques; we only
mention that a great variety of approaches is supported, including different term orders, interpretations
over various domains, modularization of termination problems according to the powerful dependency
pair framework, and numerous specialized routines. The tool also provides support for relative termina-
tion, as well as means to show termination with respect to strategies (see Section 7) and nontermination.
Upon success, TTT2 outputs all details of the (non)termination proof such as interpretations, parameters
of orderings, or a counterexample in case termination was disproved. This helps students (as well as
researchers) to understand the result.

Specialized support for teaching was added recently [28]. We mention the encoding of the state of
the web interface into a URL, which allows examples that are used for teaching to be directly loaded into
the web interface by a simple mouse click from the slides. This avoids time-consuming and error-prone
manipulations during a lecture or talk. To illustrate this, clicking here opens the web interface of TTT2 in

1http://cl-informatik.uibk.ac.at/software/ttt2/

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR%20x)%0A(RULES%0A%20b(b(x))%20-%3E%20w(w(w(w(x))))%0A%20w(w(x))%20-%3E%20w(x)%0A%20b(w(x))%20-%3E%20w(w(w(b(x))))%0A%20w(b(x))%20-%3E%20b(x)%0A)&strategy=poly&template=b%20%3D%204x0%2B_
http://cl-informatik.uibk.ac.at/software/ttt2/

4 Tools in Term Rewriting for Education

Figure 1: The web interface of TTT2.

a browser with the above bean rules and a partial polynomial interpretation, indicating that we look for
an interpretation with •A(x) = 4x+ c for some constant c. A screenshot is shown in Figure 1. Guiding
termination methods by providing some of the parameters is also supported for the Knuth–Bendix order
(KBO), the lexicographic path order (LPO), and matrix interpretations, since these are the termination
methods taught in the bachelor course on term rewiting at the University of Innsbruck. This feature
is useful for students in multiple respects: Sometimes exercises demand to complete a given partial
interpretation, in other cases an interpretation of a particular shape is demanded; in both cases students
can check their solutions with this functionality. But it also helps them to refine their own incomplete
solutions, and can be used to show that, for instance, a certain precedence relation between two function
symbols does not work for LPO or KBO.

We conclude this section with another example where termination is less obvious.

Example 3.2 (Battle of Hydra and Hercules). The mythological monster Hydra is a dragon-like creature
with multiple heads. Whenever Hercules in his fight chops off a head, more and more new heads can
grow instead, since the beast gets increasingly angry. Here we model a Hydra as an unordered tree. If
Hercules cuts off a leaf corresponding to a head, the tree is modified in the following way: If the cut-off

S. Winkler and A. Middeldorp 5

node h has a grandparent n, then the branch from n to the parent of h gets multiplied, where the number
of copies depends on the number of decapitations so far. Hydra dies if there are no heads left, in that case
Hercules wins. The following sequence shows an example fight:

1 2 3 4 5

Though the number of heads can grow considerably in one step, it turns out that the fight always termi-
nates, and Hercules will win independent of his strategy. This can be shown by an argument based on
ordinals. Touzet modeled this process as a TRS H [34]. However, derivations may get very long: their
length cannot be described by a multiple recursive function in the size of the initial monster. This was
one of the reasons that Touzet’s TRS remained out of reach for automatic tools for more than a decade,
until ordinal interpretations were developed to deal with such systems [39]. Nowadays, TTT2 can show
termination of H automatically, using an implementation of this technique.

4 Confluence

In many applications, it is of interest to know whether the process described by a TRS satisfies prop-
erties related to determinism. For instance, in Example 1.1 one would like to know whether different
strategies of the players lead to different results. The most studied property in rewriting in this context is
confluence, defined below.

Definition 4.1. A TRS R is locally confluent if R← ·→R ⊆ ↓R, and confluent if ↑R ⊆ ↓R holds.

According to a famous result by Newman [18], these two properties coincide if a TRS is terminating.

Lemma 4.1. A terminating and locally confluent TRS is confluent.

The definiton of confluence imposes a condition on all peaks, i.e., rewrite sequences of the form →∗
R

· →∗R, of which there might be infinitely many, in addition to the fact that→∗R is in general undecidable.
Fortunately, it is known that a TRS R is locally confluent if all its critical pairs CP(R) are joinable, of
which there are only finitely many. Thus it turns out that it suffices to consider finitely many peaks for
local confluence, as expressed by Lemma 4.2 below.

Definition 4.2. Let `1→ r1 and `2→ r2 be renamings of rewrite rules in R without common variables,
such that the following conditions are satisfied:

• p is a non-variable position in `2,

• σ is a most general unifier of `2|p and `1, and

• if p = ε then `1→ r1 and `2→ r2 are not variants.

The triple 〈`1→ r1, p, `2→ r2〉 constitutes a critical overlap, and `2σ [r1σ]p ≈ r2σ is a critical pair of R.

Two rewrite steps s R← ·→R t are said to form a critical peak if s≈ t is a critical pair, and the critical
pair is called joinable if s ↓R t. In the sequel we denote the set of all critical pairs of R by CP(R). The
following lemma explains the importance of critical pairs for local confluence.

6 Tools in Term Rewriting for Education

Lemma 4.2 (Critical Pair Lemma [12]). Consider a TRS R and terms s and t. If there is a peak s R←
·→R t then s ↓R t or s↔CP(R) t.

In connection with Newman’s Lemma, the Critical Pair Lemma implies that confluence is decidable
for terminating systems. This result can be used to investigate determinism of the bean game given in
the introduction.

Example 4.1. We investigate confluence of the TRS R1 from Example 1.1. Since the TRS is terminating,
confluence and local confluence coincide. We thus analyze the critical pairs of R1. The following eight
diagrams show all critical peaks of R:

◦◦◦

◦◦ ◦◦

◦◦•

◦• ◦•

◦•◦

◦• •◦

•

◦••

◦◦ ••

◦

•◦◦

•◦ •◦

•◦•

•• ••

••◦

•• ◦◦

◦

•••

•◦ ◦•

•

In each of these local peaks, the rewrite steps either lead to the same result, or the resulting two terms have
a common reduct that is reached in a single step from both. Thus R1 is locally confluent by Lemma 4.2,
and confluent by Lemma 4.1 since R1 is terminating. This implies that the result of the game only
depends on the initial configuration. A similar analysis applies to the TRS R2 of Example 1.1, although
finding a common reduct requires more steps:

◦◦◦

◦◦ ◦◦

•••

◦◦ ◦ ◦ • •◦ ◦ ◦ ◦

•
∗ ∗

••◦

•◦ ◦ ◦ • ◦◦ ◦ ◦ ◦

◦
∗ ∗

•◦◦

•◦ ◦◦ ◦ • ◦

•
∗ ∗

◦◦•

◦• ◦•

◦••

◦◦ ◦ ◦ ◦ ••

◦
∗ ∗

•◦•

•• ◦◦ ◦ • •

◦
∗ ∗

◦•◦

◦◦ ◦ ◦ • •◦

•
∗ ∗

For systems that are non-terminating, joinability of critical pairs is insufficient for confluence. By
forbidding criticial pairs and imposing the condition that left-hand sides of rules do not contain repeated
variables (left-linearity), confluence is guaranteed [27]. This syntactic criterion is called orthogonality.
We give an example.

Example 4.2. The following TRS R models a functional program to enumerate prime numbers:

primes→ sieve(from(s(s(0)))) sieve(0 : y)→ sieve(y)

from(n)→ n : from(s(n)) sieve(s(n) : y)→ s(n) : sieve(filter(n,y,n))

take(0,y)→ nil filter(0,x : y,m)→ 0 : filter(m,y,m)

take(s(n),x : y)→ x : take(n,y) filter(s(n),x : y,m)→ x : filter(n,y,m)

It does not terminate as it can, for instance, exhibit the sequence from(0)→ 0 : from(s(0))→ 0 : s(0) :
from(s(s(0)))→ However, if the corresponding code is executed using lazy evaluation then non-
termination is not a problem for the program. Since the TRS is orthogonal, confluence does hold. As a
consequence, every term has at most one normal form. For instance, a call take(s(s(0)),primes) evaluates
to the (unique) normal form s(s(0)) : s(s(s(0))) : nil, representing the list consisting of the first two prime
numbers.

S. Winkler and A. Middeldorp 7

Figure 2: The web interface of CSI.

In a first course on term rewriting the two sufficient conditions described above are typically taught
to students and every confluence tool supports these techniques. CSI [17, 38] is developed in Innsbruck.
It is built on top of TTT2 and available via a web interface and as a stand-alone executable.2 The web
interface is less elaborate than the one of TTT2. One reason for this is that the basic sufficient conditions
do not have parameters that need to be instantiated. But just like TTT2 also CSI outputs all details of the
(non)confluence proof to make proof reconstruction for users as easy as possible.

For this paper we added URL encoding. As a consequence, a mouse click suffices to preload the
TRS of Example 4.2. The result is shown in Figure 2.

Numerous other techniques have been developed for ensuring confluence and related properties like
unique normal forms, some of which are occasionally taught in advanced courses on rewriting. CSI is
not the only confluence tool around. All tools for confluence and related properties that participate in
the yearly Confluence Competition (CoCo) [15] are available via CoCoWeb,3 a convenient web interface
that provides a single entry point to all tools [9].

5 Completion

Before mentioning any relevant theory, we provide some examples. The first one appeared as a contest
in a Dutch popular science magazin [24].

2http://cl-informatik.uibk.ac.at/software/csi/
3http://cocoweb.uibk.ac.at/

http://colo6-c703.uibk.ac.at/csi/index.php?problem=(VAR%0A%20%20m%20n%20x%20y%0A)%0A(RULES%0A%20%20primes%20-%3E%20sieve(from(s(s(0))))%0A%20%20from(n)%20-%3E%20%3A(n%2Cfrom(s(n)))%0A%20%20take(0%2Cy)%20-%3E%20nil%0A%20%20take(s(n)%2C%3A(x%2Cy))%20-%3E%20%3A(x%2Ctake(n%2Cy))%0A%20%20sieve(%3A(0%2Cy))%20-%3E%20sieve(y)%0A%20%20sieve(%3A(s(n)%2Cy))%20-%3E%20%3A(s(n)%2Csieve(filter(n%2Cy%2Cn)))%0A%20%20filter(0%2C%3A(x%2Cy)%2Cm)%20-%3E%20%3A(0%2Cfilter(m%2Cy%2Cm))%0A%20%20filter(s(n)%2C%3A(x%2Cy)%2Cm)%20-%3E%20%3A(x%2Cfilter(n%2Cy%2Cm))%0A)&property=CR&version=csi123
http://cl-informatik.uibk.ac.at/software/csi/
http://cocoweb.uibk.ac.at/

8 Tools in Term Rewriting for Education

Example 5.1. Genetic engineers in a (hypothetical) research lab want to create cows that produce cola
instead of milk. To that end they plan to transform the DNA of the milk gene represented by the sequence
TAGCTAGCTAGCT in every fertilized egg into the cola gene, i.e., the sequence CTGACTGACT. The
research group already developed techniques to perform the following DNA transformations:

TCAT↔ T GAG↔ AG CTC↔ TC AGTA↔ A TAT↔ CT

However, recently it has been discovered that the mad cow disease is caused by a retrovirus with the
DNA sequence CTGCTACTGACT. Could it happen that accidentally cows with this virus are created?
Example 5.2 (Chameleon Island [6]). A colony of chameleons on a remote island consists of 20 red, 18
blue, and 16 green individuals which continuously walk around. Whenever two chameleons of different
color meet, both change to the third color, i.e., they change according to the following rewrite rules:

R ·G→ B ·B B ·R→ G ·G G ·B→ R ·R
G ·R→ B ·B R ·B→ G ·G B ·G→ R ·R

Some time passes during which no chameleons are born or die nor do any enter or leave the colony. Is it
possible that after this period, all 54 chameleons are of the same color?

Both of these examples can be seen as instances of the validity problem: Given a set of rewrite rules
R and two terms s and t, does s↔∗R t hold? While this problem is undecidable in general, Knuth–Bendix
completion [12] is a method to solve some instances.

Definition 5.1. A TRS is complete if it is confluent and terminating. A completion procedure takes as
input an ES E and attempts to generate a complete TRS R such that↔∗E =↔∗R.

If successful, the resulting TRS R can be used to decide the validity problem: by the properties of a
completion procedure and because R is complete the following equivalences hold:

↔∗E = ↔∗R = →!
R · →!

R

Therefore, for any two terms s and t, s↔∗E t if and only if s and t have the same R-normal form, which
is unique since R is confluent. However, since the validity problem is undecidable, completion does not
always succeed: it may also fail if some equations cannot be appropriately processed, or run indefinitely.

Applying completion manually often turns out to be a lengthy and tedious process, in particular
for students, who lack experience. This observation triggered the development of the Knuth-Bendix
Completion Visualizer (KBCV) [31] which is an implementation of a completion procedure providing
two different modes: In the automatic mode it attempts to complete the system without further user guid-
ance. But it offers also an interactive mode, where the user can execute a completion procedure step-wise,
which is useful for students to get acquainted with completion: All inference rules of the completion in-
ference system taught in the term rewriting course can be applied separately on the present equations
and rules to observe their effect, and users can also revert steps that turned out to be disadvantageous.
KBCV is available as a Java executable, via a web interface, or as an Android application. Figure 3 shows
screenshots from the KBCV Android application run on the gene transformation equations.
Example 5.3. When KBCV is run in automatic mode on the five equations corresponding to possible
gene transformations in Example 5.1, it may produce the TRS R consisting of the following six rules:

CT→ T TAT→ T AGT→ AT GA→ A ATA→ A TCA→ TA

S. Winkler and A. Middeldorp 9

Figure 3: The equation editor and the completion interface of the KBCV Android application.

As R is complete, every two convertible terms have a common normal form. For instance, this is indeed
the case for the terms TAGCTAGCTAGCT and CTGACTGACT corresponding to the milk and cola gene,
which confirms that the engineers can perform this transformation:

TAGCTAGCTAGCT →!
R T →!

R CTGACTGACT

The milk gene and the mad cow retrovirus, on the other hand, have different normal forms:

TAGCTAGCTAGCT →!
R T 6= TGT →!

R CTGCTACTGACT

Hence there is no danger that an experiment using the above transformations produces the retrovirus.

The case of the chameleon puzzle in Example 5.2 is more complicated because the six color-changing
rules do not suffice to model the problem as a TRS as the animals do not meet in a fixed order. In formal
terms, the meeting operator · should be associative and commutative, i.e., satisfy the following equations:

(x · y) · z≈ x · (y · z) x · y≈ y · x

However, any completion procedure will fail when confronted with the second equation since it cannot be
oriented into a terminating rewrite rule. Associative and commutative (AC) operators commonly occur
in practice, for instance in many algebraic specifications. To deal with such situations, AC-completion
procedures have been developed which work modulo such equations [21]. The tool mkbTT [36] offers
both a standard and an AC-completion procedure in an automatic mode, and is available as a binary or
via a web interface.4

4http://cl-informatik.uibk.ac.at/software/mkbtt/

http://cl-informatik.uibk.ac.at/software/mkbtt/

10 Tools in Term Rewriting for Education

Figure 4: The web interface of mkbTT.

Example 5.4. When mkbTT is run on the following three equations with AC operator ·:

R ·G≈ B ·B B ·R≈ G ·G G ·B≈ R ·R

it outputs a TRS R that is obtained by reverting one equation and adding one further rule:

R ·G→ B ·B G ·G→ R ·B G ·B→ R ·R B ·B ·B→ R ·R ·R

This TRS is complete modulo AC. We can now rewrite (modulo AC) the terms corresponding to the
initial colony and 54 monochromatic chameleons to their respective normal form, where we abbreviate
terms of the form R · · · · ·R with n occurrences of R by n R:

20 R ·18 B ·16 G →!
R/AC 52 R ·2 B 54 B →!

R/AC 54 R 54 R →!
R/AC 54 R 54 G →!

R/AC 54 R

Since the normal form 52 R · 2 B of the initial colony is different from the normal form 54 R of 54
monochromatic chameleons these situations are not convertible. Hence it is impossible that all animals
turn into the same color. By clicking here the interested reader can test the web interface of mkbTT on
this puzzle. The result is displayed in Figure 4.

6 First-Order Theory of Rewriting

An introductory course on term rewriting typically explains basic properties like termination and (local)
confluence, together with relationships among these on an abstract level. For instance, local confluence

∀s∀ t ∀u (s→ t ∧ s→ u =⇒ ∃v (t→∗ v ∧ u→∗ v))

http://colo6-c703.uibk.ac.at/mkbtt/interface/index.php?problem=(VAR%20x)%0A(THEORY%20(AC%20p))%0A(RULES%0Ap(g%2Cr)%20-%3E%20p(b%2Cb)%0Ap(g%2Cb)%20-%3E%20p(r%2Cr)%0Ap(r%2Cb)%20-%3E%20p(g%2Cg)%0A)%0A&calculus=normalized

S. Winkler and A. Middeldorp 11

is a strictly weaker property than confluence

∀s∀ t ∀u (s→∗ t ∧ s→∗ u =⇒ ∃v (t→∗ v ∧ u→∗ v)) (1)

and the prototype example of a locally confluent rewrite system that is not confluent consists of the four
rewrite rules

a→ b b→ a a→ c b→ d

involving only constants. This is an example of an abstract rewrite system (ARS for short), which is a
rewrite system over a signature that consists of constants.

Depending on the application area, one can think of a vast number of properties of rewrite systems
which are expressible in first-order formulas like (1). Natural questions arising in this context are whether
a given property P is satisfiable, valid, or implies a different property P′. Such questions also serve as
useful exercises in courses on term rewriting to deepen the understanding of the underlying concepts.
Though for many properties of interest such queries are undecidable, certain classes of TRSs turn out to
admit decision procedures. Tool support to that end is provided by FORT [25, 26], an implementation
of the decision procedure [5] for the first-order theory of rewriting for the class of finite left-linear, right-
ground TRSs. This class contains all ARSs. FORT has two different modes.

On the one hand, given a left-linear, right-ground TRS and a formula in the first-order theory of
rewriting as input, it decides whether the property expressed by the formula holds for the given TRS.
Formulas are first-order logic formulas without function symbols and the predicate symbols include
= (equality), → (one-step rewriting), →∗ (many-step rewriting), →! (rewriting to normal form), −→‖
(parallel rewriting), and ↔∗ (conversion). Variables in formulas represent arbitrary ground terms over
the signature of the input TRS. Some of the predicate symbols do not increase the expressive power of
the language but provide convenient shorthands. For instance, →! is such a symbol since s→! t if and
only if s→∗ t ∧ ¬∃u (t→ u). For expressing termination, FORT supports the unary predicates FinR for
arbitrary binary regular relations R:

FinR(t) ⇐⇒ (t,u) ∈ R for finitely many ground terms u

The formula ∀ t (Fin→+(t) ∧ ¬(t →+ t)) states that every term has finitely many reducts and admits no
cycle, which is equivalent to termination for finitely-branching TRSs.

On the other hand, FORT provides a synthesis mode in which it tries to synthesize a left-linear,
right-ground TRS that satisfies the formula given as input. This is practical only when there exists a
small enough witnessing TRS. For instance, when using FORT to synthesize a locally confluent TRS
that is not confluent it delivers

g(g(x))→ g(g(g(c))) g(g(g(c)))→ c

within a few seconds. We can use the decision mode of FORT to confirm the non-confluence of this
TRS. Witness generation, a recent extension [26], can be used to find terms in a non-joinable peak:

s : g(g(g(g(c)))) t : g(c) u : c

Several input parameters allow to guide the search for a suitable TRS. We refer to [25] for further details.

12 Tools in Term Rewriting for Education

The current version of FORT is written in Java and available as an executable JAR file.5 The decision
procedure implemented in FORT is based on tree automata techniques (ground tree transducers, tree
automata operating on encodings of relations on ground terms), which are covered in a graduate course
in Innsbruck on selected topics in term rewriting. Since tree automata operate on ground terms, the
properties that can be expressed in the first-order theory of rewriting are properties on ground terms. So
the earlier formula (1) stands for ground-confluence, which differs from confluence, even for left-linear
right-ground TRSs. FORT provides special support to deal with non-ground terms for properties related
to confluence. For details we refer to [26].

7 Strategies

In Example 4.2 we have seen an example of a non-terminating confluent TRS. For terms that have a
normal form but also admit infinite computations, like take(s(s(0)),primes), it is important to adopt an
evaluation strategy that guarantees that the normal form is reached. The study of strategies has a rich
history—it goes back to the early days of λ -calculus and combinatory logic—and many deep results
have been obtained (see [19]). Students are typically taught the main strategies and their normalization
behaviour, without going into the proof details.
Example 7.1. We revisit Example 4.2. If we adopt an eager evaluation strategy like leftmost-innermost
in which the leftmost of the innermost redexes is selected in each reducible term, we will not reach the
normal form of take(s(s(0)),primes), where we use n to denote sn(0):

take(2,primes) →R take(2,sieve(from(2)))

→R take(2,sieve(2 : from(3)))

→R take(2,sieve(2 : (3 : from(4))))

→R · · ·

Adopting the leftmost-outermost strategy in which the leftmost of the outermost redexes is selected, the
normal form 2 : (3 : nil) is reached:

take(2,primes) →R take(2,sieve(from(2)))

→R take(2,sieve(2 : from(3)))

→R take(2,2 : sieve(filter(1, from(3),1)))

→R 2 : take(1,sieve(filter(1, from(3),1)))

→R 2 : take(1,sieve(filter(1,3 : from(4),1)))

→R 2 : take(1,sieve(3 : filter(0, from(4),1)))

→R 2 : take(1,3 : sieve(filter(2,filter(0, from(4),1),2)))

→R 2 : (3 : take(0,sieve(filter(2,filter(0, from(4),1),2))))

→R 2 : (3 : nil)

Other evaluation strategies like the maximal strategy (previously known as full-substitution or Gross–
Knuth reduction) are more difficult to apply correctly and this is where the tool AutoStrat,6 comes in

5http://cl-informatik.uibk.ac.at/software/FORT/
6http://cl-informatik.uibk.ac.at/software/AutoStrat/

http://cl-informatik.uibk.ac.at/software/FORT/
http://cl-informatik.uibk.ac.at/software/AutoStrat/

S. Winkler and A. Middeldorp 13

handy. This tool was developed in a bachelor project [16] and also has support for strategy annotations.
These were introduced in [22, 23] and provide the user with more control over the evaluation strategy. A
key notion here is in-time. We provide an example.
Example 7.2. Consider the TRS consiting of the rewrite rules

α : x∧T→ x γ : T∨ x→ T ε : ∞→ ∞ β : x∧F→ F δ : F∨ x→ x

The Greek letters are used to name to the individual rules. A strategy annotation specifies for every func-
tion symbol the order in which arguments and potentially matching rewrite rules are applied. Consider
the annotation A with

A(∧) = [2,α,β ,1] A(∨) = [1,γ,δ ,2] A(∞) = [ε] A(T) = A(F) = []

Suppose we want to evaluate the term t = (∞∧F)∨ (T∨∞).

• The strategy annotation [1,γ,δ ,2] of its root symbol ∨ tells us that we first look for a redex in the
first argument ∞∧F of t.

• The strategy annotation [2,α,β ,1] for ∧ indicates to look for a redex in the second argument F of
∞∧F. Since A(F) = [], this will fail. So we discard the first element of [2,α,β ,1] and try whether
rule α applies. This also fails. Next up is rule β . Since β is applicable, we have found our redex
and hence ∞∧F rewrites to F.

So t rewrites to F∨ (T∨∞).

A strategy annotation defines an evaluation strategy provided the annotation is full, which means
that no possibilities are omitted. The annotation A in the above example is full. If we change A(∨) =
[1,γ,δ ,2] to A(∨) = [γ,δ ,2] we lose fullness and, as a consequence, the induced strategy may get stuck
on terms which are not yet in normal form. Indeed, the term (T∧T)∨F cannot be reduced since the
only redex is in the first argument of ∨, which is excluded from the annotation for ∨.

After an annotation-guided rewrite step is performed, the process starts all over on the resulting term.
This typically results in duplicated efforts to determine the next redex. A function normalize can be
defined that continues from the position of the last step. If the annotation is not only full but also in-time,
meaning that argument positions are listed before rules that need them, this function is guaranteed to
compute a normal form whenever the annotation-guided strategy that computes the steps separately is
normalizing. We refer to [22] for formal definitions.

8 Complexity

While termination is a desirable property, it does not always suffice. For programs in performance-critical
contexts, the computational complexity is crucial, for simplification processes fast rewriting to normal
form is desired, and frequently the maximal number of rewrite steps needs to be known for theoretical
considerations. In term rewriting such considerations gave rise to the research area of complexity. In this
section we summarize relevant notions and some results.

A function symbol f is defined in a TRS R if R contains a rule f (`1, . . . , `n)→ r. Symbols which are
not defined are constructor symbols. A term t is basic with respect to a TRS R if t = f (t1, . . . , tn) such
that f is defined but none of the arguments t1, . . . , tn contain any defined symbols. Complexity analysis
in rewriting focuses on the notions defined below.

14 Tools in Term Rewriting for Education

Definition 8.1. For a terminating TRS R,
• the derivation height of a term t is given by dhR(t) = max{n | t→n

R u for some term u},
• the derivational complexity of R is defined as dcR(n) = max{dhR(t) | |t|= n}, and

• the runtime complexity of R is defined as rcR(n) = max{dhR(t) | t is basic and |t|= n}.
Here |t| denotes the size of the term t.

While the derivation height of a term t asks for the maximal number of rewrite steps that can be
performed from t before reaching a normal form, the derivational complexity of the rewrite system
relates the derivation height to the size of the starting term. The runtime complexity restricts this notion
to basic terms, which correspond to potential input of programs. The different concepts are illustrated by
the following example.
Example 8.1. Consider the following TRS R representing a functional program to shuffle a list:

nil @ ys→ ys rev(nil)→ nil shuffle(nil)→ nil

(x : xs) @ ys→ x : (xs @ ys) rev(x : xs)→ rev(xs) @ (x : nil)) shuffle(x : xs)→ x : shuffle(rev(xs)))

For instance, for the term t = rev([1,2]) we have dhR(t) = 6 because the following (unique) rewrite
sequence to its normal form has six steps:

rev([1,2]) →R (rev([2]) @ [1]

→R (rev(nil) @ [2]) @ [1]

→R (nil @ [2]) @ [1]

→R [2] @ [1]

→R 2 : (nil @ [1])

→R [2,1]

Consider a list xs of length n. Analysis of the TRS R shows that the number of steps in the (unique)
rewrite sequence to normal form is
• linear in n for a term of the form xs @ ys,

• quadratic for rev(xs), and

• cubic for shuffle(xs).
A term of the form shufflen(xs) even needs O(n4) steps. Terms of this shape turn out to witness the
worst-case as far as derivation length in R is concerned, hence dcR ∈ O(n4).

Note that the term shuffle(xs) is basic, but shufflen(xs) is not. Indeed the latter does not correspond
to a run of our shuffle program, where we expect to execute the shuffle function on some input list. On
the other hand, shuffle(xs) is basic and a witness for the cubic runtime complexity of this program, i.e.,
we have rcR ∈ O(n3).
Example 8.2. We revisit Example 1.1 from the introduction. In the case of the TRS R1 the number of
beans decreases by one with every move. Hence dcR1 ∈ O(n), i.e., the number of rewrite steps is linear
in the size of the initial configuration. The TRS R2 on the other hand admits very long derivations. The
rewrite sequence

•n(◦(x))→R2 •n−1(◦(◦(◦(•(x)))))→R2 · · · →R2 ◦3n
(•n(x))

shows that dcR2 is exponential. In fact it is known that a TRS which can be proven terminating by a
polynomial interpretation has double exponential derivational complexity in the worst case [10]. If the
interpretation is linear as in Example 3.1, the bound is still single exponential.

S. Winkler and A. Middeldorp 15

Figure 5: The web interface of TCT.

The Tyrolean Complexity Tool TCT is a fully automatic tool for complexity analysis [3]. For instance,
clicking here loads Example 8.1 into the web interface of TCT (with the result shown in Figure 5),
and running the tool on this input establishes cubic runtime complexity as remarked above (quartic
derivational complexity holds due to the technique from [7]). TCT can not only derive upper bounds
on runtime and derivational complexity of TRSs but also provides resource analysis for Java bytecode
and functional programs, in the latter case also for higher-order functions, as illustrated by the following
example.
Example 8.3. The following Haskell program reverses a list using the higher-order function fold_left:

let rec fold_left f acc = function

[] -> acc

| x::xs -> fold_left f (f acc x) xs ;;

let rev l = fold_left (fun xs x -> x :: xs) [] l ;;

TCT transforms such programs into higher-order rewrite systems [32], a paradigm whose details are
beyond the scope of this paper. Here we contend ourselves by noting that TCT can conclude linear
runtime complexity of this implementation of the rev function, as one would expect.

9 Conclusion

This paper presented automatic tools to analyze term rewrite systems, developed by the Computational
Logic Group at the University of Innsbruck. These tools are not only important in research but also valu-
able for teaching. In an annual course on term rewriting, as well as in several editions of the International
Summer School on Rewriting,7 they proved highly useful for students as well as teachers to solve and

7http://cbr.uibk.ac.at/ifip-wg1.6/summerschool.html

http://colo6-c703.uibk.ac.at/tct/tct-trs/index.php?problem=(VAR%20x%20xs%20ys)%0A(RULES%20%0A%20%20%20%40(%5B%5D%2C%20ys)%20-%3E%20ys%0A%20%20%20%40(%3A%3A(x%2C%20xs)%2C%20ys)%20-%3E%20%3A%3A(x%2C%20%40(xs%2C%20ys))%0A%20%20%20rev(%5B%5D)%20-%3E%20%5B%5D%0A%20%20%20rev(%3A%3A(x%2C%20xs))%20-%3E%20%40(rev(xs)%2C%20%3A%3A(x%2C%20%5B%5D))%0A%20%20%20shuffle(%5B%5D)%20-%3E%20%5B%5D%0A%20%20%20shuffle(%3A%3A(x%2C%20xs))%20-%3E%20%3A%3A(x%2C%20shuffle(rev(xs)))%0A)%09%09&category=rc&strategy=full&search_strategy=webAutomatic_checkbox
http://cbr.uibk.ac.at/ifip-wg1.6/summerschool.html

16 Tools in Term Rewriting for Education

prepare homework exercises and exam questions. The tools were mostly developed by (former) graduate
students but also benefitted from student feedback after the use in courses.

Related Work. Several other tools support the same TRS analysis tasks as the tools described in this
paper. In the following paragraphs, we mention recent tools which are still maintained, and focus on
their usability, in particular via web interfaces since these render them more accessible to students. We
also restrict ourselves to standard TRSs, for special types of rewrite systems more tools are available.

In the standard category of the Termination Competition 2019 six tools participated; ordered by the
number of problems solved these are AProVE [8], NaTT [37], TTT2, mu-term [1], Wanda [13], and
NTI [20]. Only AProVE and mu-term have web interfaces. The latter allows the user to control (the
shape of) polynomial interpretations, and whether to use RPO and dependency pairs (but neither LPO,
KBO, not matrix interpretations are supported). In the AProVE web interface the user cannot control the
strategy applied to prove termination (or complexity, which is also supported by AProVE). However, the
Java standalone tool offers many options for control.

In the standard category of the Confluence Competition 2019, besides CSI, ACP [2] and CoLL-
Saigawa [29] participated. Neither of these has a web interface, but CoCoWeb [9] makes them accessible.
Recent completion tools besides mkbTT and KBCV are maxcomp [11], and mædmax [35]. Only the
latter has a web interface, but it offers few options for control.

To the best of our knowledge, there are no other tools available which provide similar functionali-
ties as FORT or AutoStrat. In proving runtime and derivational complexity of TRSs, the only recent
competitor of TCT is AProVE, already described above.

Outlook. Although the presented tools cover by now all approaches explored in the basic term rewrit-
ing course, the software keeps being extended and updated to support new techniques emerging from
research. Besides their power as analysis tools, also their user-friendliness and suitability for teaching
can still be improved. Among possible extensions are web interfaces for FORT and AutoStrat, mobile-
friendly interfaces for or mobile applications of other tools besides KBCV, and more control over the
parameters of proof search, for instance in CSI and TCT. A single web interface to access all of the tools
is another useful extension. This could include a “meta-analyzer” option which uses the current tools to
analyze multiple properties of a given TRS at once.

Finally, we comment on the reliability of the presented tools. Automated reasoning implementations
constitute complex pieces of software due to sophisticated deduction techniques, a high degree of opt-
mization, and elaborate heuristics. Hence, implementation errors are to be expected. In order to deal
with this problem, trusted proof checkers for rewrite tools have been implemented in the course of the
last decade. To that end, a vast amount of rewriting theory has been formalized and proved correct in
Isabelle/HOL in the Isabelle Formalization of Rewriting (IsaFoR) project [30, 33].8 From this formaliza-
tion the proof checker CeTA is generated automatically, which can validate certificates for the respective
properties (like termination, confluence of completeness) output by TTT2, CSI, KBCV, mkbTT, FORT,
or TCT. Even though many techniques are already supported by IsaFoR/CeTA, some of the methods
implemented in tools remain to be added.

8http://cl-informatik.uibk.ac.at/isafor/

http://cl-informatik.uibk.ac.at/isafor/

S. Winkler and A. Middeldorp 17

References
[1] Beatriz Alarcón, Raúl Gutiérrez, Salvador Lucas & Rafael Navarro-Marset (2011): Proving Termination

Properties with MU-TERM. In: Proc. 13thAlgebraic Methodology and Software Technology, Lecture Notes
in Computer Science 6486, pp. 201–208, doi:10.1007/978-3-642-17796-5 12.

[2] Takahito Aoto, Junichi Yoshida & Yoshihito Toyama (2009): Proving Confluence of Term Rewriting Systems
Automatically. In: Proc. 20th International Conference on Rewriting Techniques and Applications, Lecture
Notes in Computer Science 5595, pp. 93–102, doi:10.1007/978-3-642-02348-4 7.

[3] Martin Avanzini, Georg Moser & Michael Schaper (2016): TcT: Tyrolean Complexity Tool. In: Proc. 22nd
International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science 9636, Springer, pp. 407–423, doi:10.1007/978-3-662-49674-9 24.

[4] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press,
doi:10.1017/CBO9781139172752.

[5] Max Dauchet & Sophie Tison (1990): The Theory of Ground Rewrite Systems is Decidable. In: Proc. 5th
IEEE Symposium on Logic in Computer Science, pp. 242–248, doi:10.1109/LICS.1990.113750.

[6] Nachum Dershowitz & David A. Plaisted (2001): Chapter 9 – Rewriting. In: Handbook of Automated
Reasoning, North-Holland, pp. 535–610, doi:10.1016/B978-044450813-3/50011-4.

[7] Carsten Fuhs (2019): Transforming Derivational Complexity of Term Rewriting to Runtime Complexity. In:
Proc. 12th International Workshop on Frontiers of Combining Systems, Lecture Notes in Computer Science
11715, Springer, pp. 348–364, doi:10.1007/978-3-030-29007-8 20.

[8] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs, Jera
Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Strder, Stephanie Swiderski & Ren
Thiemann (2017): Analyzing Program Termination and Complexity Automatically with AProVE. Journal of
Automated Reasoning 58(1), pp. 3–31, doi:10.1007/s10817-016-9388-y.

[9] Nao Hirokawa, Julian Nagele & Aart Middeldorp (2018): Cops and CoCoWeb – Infrastructure for Conflu-
ence Tools. In: Proc. 9th International Joint Conference on Automated Reasoning, Lecture Notes in Artificial
Intelligence 10900, Springer, pp. 346–353, doi:10.1007/978-3-319-94205-6 23.

[10] Dieter Hofbauer & Clemens Lautemann (1989): Termination Proofs and the Length of Derivations. In: Proc.
3rd International Conference on Rewriting Techniques and Applications, Lecture Notes in Computer Science
355, Springer, pp. 167–177, doi:10.1007/3-540-51081-8 107.

[11] Dominik Klein & Nao Hirokawa (2011): Maximal Completion. In: Proc. 22nd International Conference
on Rewriting Techniques and Applications, Leibniz International Proceedings in Informatics 10, pp. 71–80,
doi:10.4230/LIPIcs.RTA.2011.71.

[12] Donald E. Knuth & Peter B. Bendix (1970): Simple Word Problems in Universal Algebras. In J. Leech,
editor: Computational Problems in Abstract Algebra, Pergamon Press, pp. 263–297.

[13] Cynthia Kop (2019): A short overview of Wanda. In: Joint Proceedings of the 10th Workshop on Higher-
Order Rewriting and the 8th International Workshop on Confluence, pp. 21–25. Available from http://

cl-informatik.uibk.ac.at/iwc/hor-iwc2019.pdf.
[14] Martin Korp, Christian Sternagel, Harald Zankl & Aart Middeldorp (2009): Tyrolean Termination Tool 2. In:

Proc. 20th International Conference on Rewriting Techniques and Applications, Lecture Notes in Computer
Science 5595, Springer, pp. 295–304, doi:10.1007/978-3-642-02348-4 21.

[15] Aart Middeldorp, Julian Nagele & Kiraku Shintani (2019): Confluence Competition 2019. In: Proc. 25th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science 11429, Springer, pp. 25–40, doi:10.1007/978-3-030-17502-3 2.

[16] Fabian Mitterwallner (2018): Automating Rewrite Strategies. bachelor thesis, University of Innsbruck.
[17] Julian Nagele, Bertram Felgenhauer & Aart Middeldorp (2017): CSI: New Evidence – A Progress Report. In:

Proc. 26th International Conference on Automated Deduction, Lecture Notes in Artificial Intelligence 10395,
Springer, pp. 385–397, doi:10.1007/978-3-319-63046-5 24.

http://dx.doi.org/10.1007/978-3-642-17796-5_12
http://dx.doi.org/10.1007/978-3-642-02348-4_7
http://dx.doi.org/10.1007/978-3-662-49674-9_24
http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1109/LICS.1990.113750
http://dx.doi.org/10.1016/B978-044450813-3/50011-4
http://dx.doi.org/10.1007/978-3-030-29007-8_20
http://dx.doi.org/10.1007/s10817-016-9388-y
http://dx.doi.org/10.1007/978-3-319-94205-6_23
http://dx.doi.org/10.1007/3-540-51081-8_107
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.71
http://cl-informatik.uibk.ac.at/iwc/hor-iwc2019.pdf
http://cl-informatik.uibk.ac.at/iwc/hor-iwc2019.pdf
http://dx.doi.org/10.1007/978-3-642-02348-4_21
http://dx.doi.org/10.1007/978-3-030-17502-3_2
http://dx.doi.org/10.1007/978-3-319-63046-5_24

18 Tools in Term Rewriting for Education

[18] Max H. A. Newman (1942): On Theories with a Combinatorial Definition of Equivalence. Annals of Math-
ematics 43(2), pp. 223–243, doi:10.2307/1968867.

[19] Vincent van Oostrom & Roel de Vrijer (2003): Strategies. In Terese [32], chapter 9, pp. 475–547.

[20] Étienne Payet & Frdric Mesnard (2006): Nontermination Inference of Logic Programs. ACM Transactions
on Programming Languages and Systems 28(2), pp. 256–289, doi:10.1145/1119479.1119481.

[21] Gerald E. Peterson & Mark E. Stickel (1981): Complete Sets of Reductions for Some Equational Theories.
Journal of the ACM 28(2), pp. 233–264, doi:10.1145/322248.322251.

[22] Jaco van de Pol (2001): Just-in-time: On Strategy Annotations. In: Proc. 1st International Workshop on
Reduction Strategies in Rewriting and Programming, Electronic Notes in Theoretical Computer Science 57,
pp. 41–63, doi:10.1016/S1571-0661(04)00267-1.

[23] Jaco van de Pol (2002): JITty: A Rewriter with Strategy Annotations. In: Proc. 13th International Conference
on Rewriting Techniques and Applications, Lecture Notes in Computer Science 2378, Springer, pp. 367–370,
doi:10.1007/3-540-45610-4 26.

[24] Prijsvraag (2015): Het Cola-gen. Natuur, Wetenschap & Techniek 73(1), p. 65.

[25] Franziska Rapp & Aart Middeldorp (2016): Automating the First-Order Theory of Left-Linear Right-Ground
Term Rewrite Systems. In: Proc. 1st International Conference on Formal Structures for Computation and
Deduction, Leibniz International Proceedings in Informatics 52, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, pp. 36:1–36:12, doi:10.4230/LIPIcs.FSCD.2016.36.

[26] Franziska Rapp & Aart Middeldorp (2018): FORT 2.0. In: Proc. 9th International Joint Conference on
Automated Reasoning, Lecture Notes in Artificial Intelligence 10900, Springer, pp. 81–88, doi:10.1007/978-
3-319-94205-6 6.

[27] Barry K. Rosen (1973): Tree-Manipulating Systems and Church-Rosser Theorems. Journal of the ACM
20(1), pp. 160–187, doi:10.1145/321738.321750.

[28] Jonas Schöpf & Christian Sternagel (2018): TTT2 with Termination Templates for Teaching. The Computing
Research Repository abs/1806.05040. Available at http://arxiv.org/abs/1806.05040.

[29] Kiraku Shintani & Nao Hirokawa (2019): CoLL-Saigawa 1.3: A Joint Confluence Tool. In: Joint Proceedings
of the 10th Workshop on Higher-Order Rewriting and the 8th International Workshop on Confluence, p. 57.
Available from http://cl-informatik.uibk.ac.at/iwc/hor-iwc2019.pdf.

[30] Christian Sternagel & René Thiemann (2014): The Certification Problem Format. In: Proc. 11th Workshop
on User Interfaces for Theorem Provers (UITP), Electronic Proceedings in Computer Science 167, pp. 61–72,
doi:10.4204/EPTCS.167.8.

[31] Thomas Sternagel & Harald Zankl (2012): KBCV – Knuth–Bendix Completion Visualizer. In: Proc. 6th
International Joint Conference on Automated Reasoning, Lecture Notes in Artificial Intelligence 7364, pp.
530–536, doi:10.1007/978-3-642-31365-3 41.

[32] Terese, editor (2003): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science 55,
Cambridge University Press.

[33] René Thiemann & Christian Sternagel (2009): Certification of Termination Proofs using CeTA. In: Proc. 22th
International Conference on Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science
5674, Springer, pp. 452–468, doi:10.1007/978-3-642-03359-9 31.

[34] Hélène Touzet (1998): Encoding the Hydra Battle as a Rewrite System. In: Proc. 23rd Mathemati-
cal Foundations of Computer Science, Lecture Notes in Computer Science 1450, Springer, pp. 267–276,
doi:10.1007/BFb0055776.

[35] Sarah Winkler & Georg Moser (2018): MaedMax: A Maximal Ordered Completion Tool. In: Proc. 9th
International Joint Conference on Automated Reasoning, Lecture Notes in Computer Science 10900, pp.
472–480, doi:10.1007/978-3-319-94205-6 31.

[36] Sarah Winkler, Haruhiko Sato, Aart Middeldorp & Masahito Kurihara (2013): Multi-Completion with Ter-
mination Tools. Journal of Automated Reasoning 50(3), pp. 317–354, doi:10.1007/s10817-012-9249-2.

http://dx.doi.org/10.2307/1968867
http://dx.doi.org/10.1145/1119479.1119481
http://dx.doi.org/10.1145/322248.322251
http://dx.doi.org/10.1016/S1571-0661(04)00267-1
http://dx.doi.org/10.1007/3-540-45610-4_26
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.36
http://dx.doi.org/10.1007/978-3-319-94205-6_6
http://dx.doi.org/10.1007/978-3-319-94205-6_6
http://dx.doi.org/10.1145/321738.321750
http://arxiv.org/abs/1806.05040
http://cl-informatik.uibk.ac.at/iwc/hor-iwc2019.pdf
http://dx.doi.org/10.4204/EPTCS.167.8
http://dx.doi.org/10.1007/978-3-642-31365-3_41
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/BFb0055776
http://dx.doi.org/10.1007/978-3-319-94205-6_31
http://dx.doi.org/10.1007/s10817-012-9249-2

S. Winkler and A. Middeldorp 19

[37] Akihisa Yamada, Keiichirou Kusakari & Toshiki Sakabe (2014): Nagoya Termination Tool. In: Proc.
25th International Conference on Rewriting Techniques and Applications and 12th International Confer-
ence on Typed Lambda Calculi and Applications, Lecture Notes in Computer Science 8560, pp. 466–475,
doi:10.1007/978-3-319-08918-8 32.

[38] Harald Zankl, Bertram Felgenhauer & Aart Middeldorp (2011): CSI – A Confluence Tool. In: Proc. 22nd
International Conference on Automated Deduction, Lecture Notes in Artificial Intelligence 6803, Springer,
pp. 499–505, doi:10.1007/978-3-642-22438-6 38.

[39] Harald Zankl, Sarah Winkler & Aart Middeldorp (2015): Beyond Polynomials and Peano Arithmetic – Au-
tomation of Elementary and Ordinal Interpretations. Journal of Symbolic Computation 69, pp. 129–158,
doi:10.1016/j.jsc.2014.09.033.

http://dx.doi.org/10.1007/978-3-319-08918-8_32
http://dx.doi.org/10.1007/978-3-642-22438-6_38
http://dx.doi.org/10.1016/j.jsc.2014.09.033

	Introduction
	Preliminaries
	Termination
	Confluence
	Completion
	First-Order Theory of Rewriting
	Strategies
	Complexity
	Conclusion

