
Smarter Features, Simpler Learning?

Georg Moser and Sarah Winkler

Automated Reasoning: Challenges, Applications, Directions, Exemplary Achievements

26 August 2019, Natal



Portfolio Solver for Software Veri�cation Competition
I strategy/tool are machine learned from program characteristics

I model: SVMs

I features:

I variable roles
I loop patterns
I control �ow patterns

I would have won SV-COMP in 3 consecutive years

smarter features, simpler learningoccurrence count for 27 roles: pointers, loop bounds, counters, . . .
occurrence count for 3 types depending on iteration estimate

basic blocks, indegree, (recursive) calls

Past/Current Work in Theorem Proving

models: naive Bayes, SVMs, random forests, . . . , neural networks

features: plain input, term walks, symbol/clause count, . . .

theorem proving
problem

strategy

Demyanova et al., Empirical Software Metrics for Benchmarking of Veri�cation Tools, 2017. 2



Portfolio Solver for Software Veri�cation Competition
I strategy/tool are machine learned from program characteristics

I model: SVMs

I features:

I variable roles
I loop patterns
I control �ow patterns

I would have won SV-COMP in 3 consecutive years

smarter features, simpler learningoccurrence count for 27 roles: pointers, loop bounds, counters, . . .
occurrence count for 3 types depending on iteration estimate

basic blocks, indegree, (recursive) calls

Past/Current Work in Theorem Proving

models: naive Bayes, SVMs, random forests, . . . , neural networks

features: plain input, term walks, symbol/clause count, . . .

theorem proving
problem

strategy

Demyanova et al., Empirical Software Metrics for Benchmarking of Veri�cation Tools, 2017. 2



Portfolio Solver for Software Veri�cation Competition
I strategy/tool are machine learned from program characteristics

I model: SVMs

I features:

I variable roles
I loop patterns
I control �ow patterns

I would have won SV-COMP in 3 consecutive years

smarter features, simpler learningoccurrence count for 27 roles: pointers, loop bounds, counters, . . .
occurrence count for 3 types depending on iteration estimate

basic blocks, indegree, (recursive) calls

Past/Current Work in Theorem Proving

models: naive Bayes, SVMs, random forests, . . . , neural networks

features: plain input, term walks, symbol/clause count, . . .

theorem proving
problem

strategy

Demyanova et al., Empirical Software Metrics for Benchmarking of Veri�cation Tools, 2017. 2



Portfolio Solver for Software Veri�cation Competition
I strategy/tool are machine learned from program characteristics

I model: SVMs

I features:

I variable roles
I loop patterns
I control �ow patterns

I would have won SV-COMP in 3 consecutive years

smarter features, simpler learningoccurrence count for 27 roles: pointers, loop bounds, counters, . . .
occurrence count for 3 types depending on iteration estimate

basic blocks, indegree, (recursive) calls

Past/Current Work in Theorem Proving

models: naive Bayes, SVMs, random forests, . . . , neural networks

features: plain input, term walks, symbol/clause count, . . .

theorem proving
problem

strategy

Demyanova et al., Empirical Software Metrics for Benchmarking of Veri�cation Tools, 2017. 2



Portfolio Solver for Software Veri�cation Competition
I strategy/tool are machine learned from program characteristics

I model: SVMs

I features:

I variable roles
I loop patterns
I control �ow patterns

I would have won SV-COMP in 3 consecutive years

smarter features, simpler learningoccurrence count for 27 roles: pointers, loop bounds, counters, . . .
occurrence count for 3 types depending on iteration estimate

basic blocks, indegree, (recursive) calls

Past/Current Work in Theorem Proving

models: naive Bayes, SVMs, random forests, . . . , neural networks

features: plain input, term walks, symbol/clause count, . . .

theorem proving
problem

strategy

Demyanova et al., Empirical Software Metrics for Benchmarking of Veri�cation Tools, 2017. 2



Portfolio Solver for Software Veri�cation Competition
I strategy/tool are machine learned from program characteristics

I model: SVMs

I features:

I variable roles
I loop patterns
I control �ow patterns

I would have won SV-COMP in 3 consecutive years

smarter features, simpler learningoccurrence count for 27 roles: pointers, loop bounds, counters, . . .
occurrence count for 3 types depending on iteration estimate

basic blocks, indegree, (recursive) calls

Past/Current Work in Theorem Proving

models: naive Bayes, SVMs, random forests, . . . , neural networks

features: plain input, term walks, symbol/clause count, . . .

theorem proving
problem

strategy

Demyanova et al., Empirical Software Metrics for Benchmarking of Veri�cation Tools, 2017. 2



Portfolio Solver for Software Veri�cation Competition
I strategy/tool are machine learned from program characteristics

I model: SVMs

I features:

I variable roles
I loop patterns
I control �ow patterns

I would have won SV-COMP in 3 consecutive years

smarter features, simpler learning

occurrence count for 27 roles: pointers, loop bounds, counters, . . .
occurrence count for 3 types depending on iteration estimate

basic blocks, indegree, (recursive) calls

Past/Current Work in Theorem Proving

models: naive Bayes, SVMs, random forests, . . . , neural networks

features: plain input, term walks, symbol/clause count, . . .

theorem proving
problem

strategy

Demyanova et al., Empirical Software Metrics for Benchmarking of Veri�cation Tools, 2017. 2



Portfolio Solver for Software Veri�cation Competition
I strategy/tool are machine learned from program characteristics

I model: SVMs

I features:

I variable roles
I loop patterns
I control �ow patterns

I would have won SV-COMP in 3 consecutive years

smarter features, simpler learningoccurrence count for 27 roles: pointers, loop bounds, counters, . . .
occurrence count for 3 types depending on iteration estimate

basic blocks, indegree, (recursive) calls

Past/Current Work in Theorem Proving

models: naive Bayes, SVMs, random forests, . . . , neural networks

features: plain input, term walks, symbol/clause count, . . .

theorem proving
problem

strategy

Demyanova et al., Empirical Software Metrics for Benchmarking of Veri�cation Tools, 2017. 2



Portfolio Solver for Software Veri�cation Competition
I strategy/tool are machine learned from program characteristics

I model: SVMs

I features:

I variable roles
I loop patterns
I control �ow patterns

I would have won SV-COMP in 3 consecutive years

smarter features, simpler learningoccurrence count for 27 roles: pointers, loop bounds, counters, . . .
occurrence count for 3 types depending on iteration estimate

basic blocks, indegree, (recursive) calls

Past/Current Work in Theorem Proving

models: naive Bayes, SVMs, random forests, . . . , neural networks

features: plain input, term walks, symbol/clause count, . . .

theorem proving
problem

strategy

Demyanova et al., Empirical Software Metrics for Benchmarking of Veri�cation Tools, 2017. 2



Portfolio Solver for Software Veri�cation Competition
I strategy/tool are machine learned from program characteristics

I model: SVMs

I features:

I variable roles
I loop patterns
I control �ow patterns

I would have won SV-COMP in 3 consecutive years

smarter features, simpler learning

occurrence count for 27 roles: pointers, loop bounds, counters, . . .

occurrence count for 3 types depending on iteration estimate
basic blocks, indegree, (recursive) calls

Past/Current Work in Theorem Proving

models: naive Bayes, SVMs, random forests, . . . , neural networks

features: plain input, term walks, symbol/clause count, . . .

theorem proving
problem

strategy

Demyanova et al., Empirical Software Metrics for Benchmarking of Veri�cation Tools, 2017. 2



Portfolio Solver for Software Veri�cation Competition
I strategy/tool are machine learned from program characteristics

I model: SVMs

I features:

I variable roles
I loop patterns
I control �ow patterns

I would have won SV-COMP in 3 consecutive years

smarter features, simpler learningoccurrence count for 27 roles: pointers, loop bounds, counters, . . .

occurrence count for 3 types depending on iteration estimate

basic blocks, indegree, (recursive) calls

Past/Current Work in Theorem Proving

models: naive Bayes, SVMs, random forests, . . . , neural networks

features: plain input, term walks, symbol/clause count, . . .

theorem proving
problem

strategy

Demyanova et al., Empirical Software Metrics for Benchmarking of Veri�cation Tools, 2017. 2



Portfolio Solver for Software Veri�cation Competition
I strategy/tool are machine learned from program characteristics

I model: SVMs

I features:

I variable roles
I loop patterns
I control �ow patterns

I would have won SV-COMP in 3 consecutive years

smarter features, simpler learningoccurrence count for 27 roles: pointers, loop bounds, counters, . . .
occurrence count for 3 types depending on iteration estimate

basic blocks, indegree, (recursive) calls

Past/Current Work in Theorem Proving

models: naive Bayes, SVMs, random forests, . . . , neural networks

features: plain input, term walks, symbol/clause count, . . .

theorem proving
problem

strategy

Demyanova et al., Empirical Software Metrics for Benchmarking of Veri�cation Tools, 2017. 2



Possible Characteristics of Rewrite Systems
I variable roles = argument positions of function symbols:

I i is projection argument in rule f (t1, . . . , tn) → ti
I i is decreasing for rule f (. . . , s(ti ), . . . ) → C [f (. . . , ti , . . . )]

I recursive positions: recursive calls to same function symbol

I pattern matching positions distinguish di�erent constructors

I duplication positions contain variables which get duplicated

I loop patterns = recursion patterns: tiering and safe recursion

I control �ow = call graph analysis:

strongly connected components, in/out degree of nodes, edges be-

tween nodes of di�erent root symbols, . . .

Example

add(0, x ) → x (1) mul(0, y) → 0 (3)

add(s(x), y) → s(add(x , y)) (2) mul(s(x), y ) → add(y ,mul(x , y )) (4)

(2) (4)

3



Possible Characteristics of Rewrite Systems
I variable roles = argument positions of function symbols:

I i is projection argument in rule f (t1, . . . , tn) → ti

I i is decreasing for rule f (. . . , s(ti ), . . . ) → C [f (. . . , ti , . . . )]

I recursive positions: recursive calls to same function symbol

I pattern matching positions distinguish di�erent constructors

I duplication positions contain variables which get duplicated

I loop patterns = recursion patterns: tiering and safe recursion

I control �ow = call graph analysis:

strongly connected components, in/out degree of nodes, edges be-

tween nodes of di�erent root symbols, . . .

Example

add(0, x ) → x (1) mul(0, y) → 0 (3)

add(s(x), y) → s(add(x , y)) (2) mul(s(x), y ) → add(y ,mul(x , y )) (4)

(2) (4)

3



Possible Characteristics of Rewrite Systems
I variable roles = argument positions of function symbols:

I i is projection argument in rule f (t1, . . . , tn) → ti
I i is decreasing for rule f (. . . , s(ti ), . . . ) → C [f (. . . , ti , . . . )]

I recursive positions: recursive calls to same function symbol

I pattern matching positions distinguish di�erent constructors

I duplication positions contain variables which get duplicated

I loop patterns = recursion patterns: tiering and safe recursion

I control �ow = call graph analysis:

strongly connected components, in/out degree of nodes, edges be-

tween nodes of di�erent root symbols, . . .

Example

add(0, x ) → x (1) mul(0, y) → 0 (3)

add(s(x), y) → s(add(x , y)) (2) mul(s(x), y ) → add(y ,mul(x , y )) (4)

(2) (4)

3



Possible Characteristics of Rewrite Systems
I variable roles = argument positions of function symbols:

I i is projection argument in rule f (t1, . . . , tn) → ti
I i is decreasing for rule f (. . . , s(ti ), . . . ) → C [f (. . . , ti , . . . )]

I recursive positions: recursive calls to same function symbol

I pattern matching positions distinguish di�erent constructors

I duplication positions contain variables which get duplicated

I loop patterns = recursion patterns: tiering and safe recursion

I control �ow = call graph analysis:

strongly connected components, in/out degree of nodes, edges be-

tween nodes of di�erent root symbols, . . .

Example

add(0, x ) → x (1) mul(0, y) → 0 (3)

add(s(x), y) → s(add(x , y)) (2) mul(s(x), y ) → add(y ,mul(x , y )) (4)

(2) (4)

3



Possible Characteristics of Rewrite Systems
I variable roles = argument positions of function symbols:

I i is projection argument in rule f (t1, . . . , tn) → ti
I i is decreasing for rule f (. . . , s(ti ), . . . ) → C [f (. . . , ti , . . . )]

I recursive positions: recursive calls to same function symbol

I pattern matching positions distinguish di�erent constructors

I duplication positions contain variables which get duplicated

I loop patterns = recursion patterns: tiering and safe recursion

I control �ow = call graph analysis:

strongly connected components, in/out degree of nodes, edges be-

tween nodes of di�erent root symbols, . . .

Example

add(0, x ) → x (1) mul(0, y) → 0 (3)

add(s(x), y) → s(add(x , y)) (2) mul(s(x), y ) → add(y ,mul(x , y )) (4)

(2) (4)

3



Possible Characteristics of Rewrite Systems
I variable roles = argument positions of function symbols:

I i is projection argument in rule f (t1, . . . , tn) → ti
I i is decreasing for rule f (. . . , s(ti ), . . . ) → C [f (. . . , ti , . . . )]

I recursive positions: recursive calls to same function symbol

I pattern matching positions distinguish di�erent constructors

I duplication positions contain variables which get duplicated

I loop patterns = recursion patterns: tiering and safe recursion

I control �ow = call graph analysis:

strongly connected components, in/out degree of nodes, edges be-

tween nodes of di�erent root symbols, . . .

Example

add(0, x ) → x (1) mul(0, y) → 0 (3)

add(s(x), y) → s(add(x , y)) (2) mul(s(x), y ) → add(y ,mul(x , y )) (4)

(2) (4)

3



Possible Characteristics of Rewrite Systems
I variable roles = argument positions of function symbols:

I i is projection argument in rule f (t1, . . . , tn) → ti
I i is decreasing for rule f (. . . , s(ti ), . . . ) → C [f (. . . , ti , . . . )]

I recursive positions: recursive calls to same function symbol

I pattern matching positions distinguish di�erent constructors

I duplication positions contain variables which get duplicated

I loop patterns = recursion patterns: tiering and safe recursion

I control �ow = call graph analysis:

strongly connected components, in/out degree of nodes, edges be-

tween nodes of di�erent root symbols, . . .

Example

add(0, x ) → x (1) mul(0, y) → 0 (3)

add(s(x), y) → s(add(x , y)) (2) mul(s(x), y ) → add(y ,mul(x , y )) (4)

(2) (4)

Bellantoni and Cook, A new recursion-theoretic characterization of the polytime functions, 1992. 3



Possible Characteristics of Rewrite Systems
I variable roles = argument positions of function symbols:

I i is projection argument in rule f (t1, . . . , tn) → ti
I i is decreasing for rule f (. . . , s(ti ), . . . ) → C [f (. . . , ti , . . . )]

I recursive positions: recursive calls to same function symbol

I pattern matching positions distinguish di�erent constructors

I duplication positions contain variables which get duplicated

I loop patterns = recursion patterns: tiering and safe recursion

I control �ow = call graph analysis:

strongly connected components, in/out degree of nodes, edges be-

tween nodes of di�erent root symbols, . . .

Example

add(0, x ) → x (1) mul(0, y) → 0 (3)

add(s(x), y) → s(add(x , y)) (2) mul(s(x), y ) → add(y ,mul(x , y )) (4)

(2) (4)

3



How about theorem proving in general?

consider machine learning of strategies applied to a given problem:

I can we preprocess characteristics from theorem proving problems

which serve as useful features for learning?

I ... or better rely on neural networks discovering relevant characteris-

tics by themselves?

I how could such features look like?

theorem proving
problem

strategy

4



How about theorem proving in general?

consider machine learning of strategies applied to a given problem:

I can we preprocess characteristics from theorem proving problems

which serve as useful features for learning?

I ... or better rely on neural networks discovering relevant characteris-

tics by themselves?

I how could such features look like?

theorem proving
problem

strategy

4



How about theorem proving in general?

consider machine learning of strategies applied to a given problem:

I can we preprocess characteristics from theorem proving problems

which serve as useful features for learning?

I ... or better rely on neural networks discovering relevant characteris-

tics by themselves?

I how could such features look like?

theorem proving
problem

strategy

4



How about theorem proving in general?

consider machine learning of strategies applied to a given problem:

I can we preprocess characteristics from theorem proving problems

which serve as useful features for learning?

I ... or better rely on neural networks discovering relevant characteris-

tics by themselves?

I how could such features look like?

theorem proving
problem

strategy

4


