
Automation of Rewriting

� for Fun in Research and Pro�t in Teaching

Sarah Winkler

8th International Workshop on Theorem Proving Components for Educational Software

25 August 2019, Natal



Term Rewriting

I automatic analysis of TRSs constitutes theorem proving

I rewriting is at heart of equational reasoning

Teaching Term Rewriting

I annual course at University of Innsbruck taught by Aart Middeldorp

I since 2006: International Summer School on Rewriting

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Rewrite Tools Developed @ Computational Logic Group

TTT2, TCT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA,

ConCon, MiniSmt, AutoStrat, Ctrl

http://cl-informatik.uibk.ac.at/research/software

2

http://cl-informatik.uibk.ac.at/research/software


Term Rewriting

I automatic analysis of TRSs constitutes theorem proving

I rewriting is at heart of equational reasoning

Teaching Term Rewriting

I annual course at University of Innsbruck taught by Aart Middeldorp

I since 2006: International Summer School on Rewriting

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Rewrite Tools Developed @ Computational Logic Group

TTT2, TCT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA,

ConCon, MiniSmt, AutoStrat, Ctrl

http://cl-informatik.uibk.ac.at/research/software

2

http://cl-informatik.uibk.ac.at/research/software


Term Rewriting

I automatic analysis of TRSs constitutes theorem proving

I rewriting is at heart of equational reasoning

Teaching Term Rewriting

I annual course at University of Innsbruck taught by Aart Middeldorp

I since 2006: International Summer School on Rewriting

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Rewrite Tools Developed @ Computational Logic Group

TTT2, TCT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA,

ConCon, MiniSmt, AutoStrat, Ctrl

http://cl-informatik.uibk.ac.at/research/software

2

http://cl-informatik.uibk.ac.at/research/software


Term Rewriting

I automatic analysis of TRSs constitutes theorem proving

I rewriting is at heart of equational reasoning

Teaching Term Rewriting

I annual course at University of Innsbruck taught by Aart Middeldorp

I since 2006: International Summer School on Rewriting

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Rewrite Tools Developed @ Computational Logic Group

TTT2, TCT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA,

ConCon, MiniSmt, AutoStrat, Ctrl

http://cl-informatik.uibk.ac.at/research/software

2

http://cl-informatik.uibk.ac.at/research/software


Term Rewriting

I automatic analysis of TRSs constitutes theorem proving

I rewriting is at heart of equational reasoning

Teaching Term Rewriting

I annual course at University of Innsbruck taught by Aart Middeldorp

I since 2006: International Summer School on Rewriting

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Rewrite Tools Developed @ Computational Logic Group

TTT2, TCT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA,

ConCon, MiniSmt, AutoStrat, Ctrl

http://cl-informatik.uibk.ac.at/research/software 2

http://cl-informatik.uibk.ac.at/research/software


Term Rewriting

I automatic analysis of TRSs constitutes theorem proving

I rewriting is at heart of equational reasoning

Teaching Term Rewriting

I annual course at University of Innsbruck taught by Aart Middeldorp

I since 2006: International Summer School on Rewriting

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Rewrite Tools Developed @ Computational Logic Group

TTT2, TCT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA,

ConCon, MiniSmt, AutoStrat, Ctrl

http://cl-informatik.uibk.ac.at/research/software 2

http://cl-informatik.uibk.ac.at/research/software


Term Rewriting

I automatic analysis of TRSs constitutes theorem proving

I rewriting is at heart of equational reasoning

Teaching Term Rewriting

I annual course at University of Innsbruck taught by Aart Middeldorp

I since 2006: International Summer School on Rewriting

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Rewrite Tools Developed @ Computational Logic Group

TTT2, TCT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA,

ConCon, MiniSmt, AutoStrat, Ctrl

http://cl-informatik.uibk.ac.at/research/software 2

http://cl-informatik.uibk.ac.at/research/software


Term Rewriting

I automatic analysis of TRSs constitutes theorem proving

I rewriting is at heart of equational reasoning

Teaching Term Rewriting

I annual course at University of Innsbruck taught by Aart Middeldorp

I since 2006: International Summer School on Rewriting

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Rewrite Tools Developed @ Computational Logic Group

TTT2, TCT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA,

ConCon, MiniSmt, AutoStrat, Ctrl

http://cl-informatik.uibk.ac.at/research/software 2

http://cl-informatik.uibk.ac.at/research/software


Term Rewriting

I automatic analysis of TRSs constitutes theorem proving

I rewriting is at heart of equational reasoning

Teaching Term Rewriting

I annual course at University of Innsbruck taught by Aart Middeldorp

I since 2006: International Summer School on Rewriting

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Rewrite Tools Developed @ Computational Logic Group

TTT2, TCT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA,

ConCon, MiniSmt, AutoStrat, Ctrl

http://cl-informatik.uibk.ac.at/research/software 2

http://cl-informatik.uibk.ac.at/research/software


Outline

Motivating Examples

Term Rewriting

Tools

Formalization and Certi�cation

Conclusion

3



Teaching Example 1: Cola Gene Puzzle

Genetic engineers want to create cows that produce cola instead of milk.

To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT

Techniques exist to perform the following DNA transformations:

TCAT↔ T GAG↔ AG CTC↔ TC AGTA↔ A TAT↔ CT

Recently it has been discovered that the mad cow disease is caused by a

retrovirus with the following DNA sequence

CTGCTACTGACT

What now, if accidentally cows with this virus are created? According to

the engineers there is little risk because this never happened in their

experiments, but various action groups demand absolute assurance.

4



Teaching Example 1: Cola Gene Puzzle

Genetic engineers want to create cows that produce cola instead of milk.

To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT

Techniques exist to perform the following DNA transformations:

TCAT↔ T GAG↔ AG CTC↔ TC AGTA↔ A TAT↔ CT

Recently it has been discovered that the mad cow disease is caused by a

retrovirus with the following DNA sequence

CTGCTACTGACT

What now, if accidentally cows with this virus are created? According to

the engineers there is little risk because this never happened in their

experiments, but various action groups demand absolute assurance.

4



Teaching Example 1: Cola Gene Puzzle

Genetic engineers want to create cows that produce cola instead of milk.

To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT

Techniques exist to perform the following DNA transformations:

TCAT↔ T GAG↔ AG CTC↔ TC AGTA↔ A TAT↔ CT

Recently it has been discovered that the mad cow disease is caused by a

retrovirus with the following DNA sequence

CTGCTACTGACT

What now, if accidentally cows with this virus are created? According to

the engineers there is little risk because this never happened in their

experiments, but various action groups demand absolute assurance.
4



Teaching Example 2: Chameleon Puzzle

A colony of Brazilian chameleons consists of 20 red, 18 blue, and 16 green

animals. Whenever two of di�erent color meet, both change to the third

color. Some time passes during which no chameleons are born or die nor

do any enter or leave the colony.

Is it possible that all 54 chameleons become the same color?

5



Teaching Example 2: Chameleon Puzzle

A colony of Brazilian chameleons consists of 20 red, 18 blue, and 16 green

animals. Whenever two of di�erent color meet, both change to the third

color. Some time passes during which no chameleons are born or die nor

do any enter or leave the colony.

Is it possible that all 54 chameleons become the same color?

5



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦

player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦

player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦

player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦

player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦

player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦

player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦

player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦

player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦

player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦

player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦

player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦

player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦

player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •

player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •

player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦

player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦

player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •

player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦

player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦

player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •

player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
player 2 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • ◦
player 1 • ◦ • ◦ • • ◦ • ◦ ◦ • ◦
player 2 • ◦ • ◦ • • ◦ • ◦ • ◦
player 1 • • ◦ • • ◦ • ◦ • ◦
player 2 • • ◦ • • ◦ • ◦ •
player 1 • • ◦ • • ◦ • •
player 2 • • ◦ • • ◦ ◦
player 1 • • ◦ • • ◦
player 2 • • ◦ • •
player 1 • • ◦ ◦
player 2 • • ◦
player 1 • •
player 2 ◦

I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Teaching Example 3: Simple Game

I two-player game where state is sequence of black and white stones

I allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

I player who puts last white wins

I initial state

• • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
I questions

I does the game terminate?

I which strategies are winning strategies for player 2?

6



Example 4: Sieve of Eratosthenes

TRS R models sieve of Eratosthenes to enumerate prime numbers:

primes→ sieve(from(s(s(0)))) sieve(0 : y)→ sieve(y)

from(x)→ x : from(s(x)) sieve(s(x) : y)→ s(x) : sieve(�lter(x , y , x))

hd(x : y)→ x �lter(0, y : z ,w)→ 0 : �lter(w , z ,w)

tl(x : y)→ y �lter(s(x), y : z ,w)→ y : �lter(x , z ,w)

Questions About (Functional) Programs

I is the given program terminating?

I are results, if existent, unique?

I what is the program's computational complexity, if it terminates?

7



Example 4: Sieve of Eratosthenes

TRS R models sieve of Eratosthenes to enumerate prime numbers:

primes→ sieve(from(s(s(0)))) sieve(0 : y)→ sieve(y)

from(x)→ x : from(s(x)) sieve(s(x) : y)→ s(x) : sieve(�lter(x , y , x))

hd(x : y)→ x �lter(0, y : z ,w)→ 0 : �lter(w , z ,w)

tl(x : y)→ y �lter(s(x), y : z ,w)→ y : �lter(x , z ,w)

Questions About (Functional) Programs

I is the given program terminating?

I are results, if existent, unique?

I what is the program's computational complexity, if it terminates?

7



Example 4: Sieve of Eratosthenes

TRS R models sieve of Eratosthenes to enumerate prime numbers:

primes→ sieve(from(s(s(0)))) sieve(0 : y)→ sieve(y)

from(x)→ x : from(s(x)) sieve(s(x) : y)→ s(x) : sieve(�lter(x , y , x))

hd(x : y)→ x �lter(0, y : z ,w)→ 0 : �lter(w , z ,w)

tl(x : y)→ y �lter(s(x), y : z ,w)→ y : �lter(x , z ,w)

Questions About (Functional) Programs

I is the given program terminating?

I are results, if existent, unique?

I what is the program's computational complexity, if it terminates?

7



Example 4: Sieve of Eratosthenes

TRS R models sieve of Eratosthenes to enumerate prime numbers:

primes→ sieve(from(s(s(0)))) sieve(0 : y)→ sieve(y)

from(x)→ x : from(s(x)) sieve(s(x) : y)→ s(x) : sieve(�lter(x , y , x))

hd(x : y)→ x �lter(0, y : z ,w)→ 0 : �lter(w , z ,w)

tl(x : y)→ y �lter(s(x), y : z ,w)→ y : �lter(x , z ,w)

Questions About (Functional) Programs

I is the given program terminating?

I are results, if existent, unique?

I what is the program's computational complexity, if it terminates?

7



Outline

Motivating Examples

Term Rewriting

Tools

Formalization and Certi�cation

Conclusion

8



Abstract Rewriting

I abstract rewrite system is carrier set with binary relation

I . . . is terminating if there are no in�nite rewrite sequences

I . . . is con�uent if ∗R← · →∗R ⊆ ↓R
I . . . is complete if terminating and con�uent

Example
rewrite system R

I rewrite sequence:

R

R R R
∗

I R is terminating

I R is con�uent

e.g. R
∗ and R

∗

but also R
∗ and R

∗

9



Abstract Rewriting

I abstract rewrite system is carrier set with binary relation

I . . . is terminating if there are no in�nite rewrite sequences

I . . . is con�uent if ∗R← · →∗R ⊆ ↓R
I . . . is complete if terminating and con�uent

Example
rewrite system R

I rewrite step:

R

R R R
∗

I R is terminating

I R is con�uent

e.g. R
∗ and R

∗

but also R
∗ and R

∗

9



Abstract Rewriting

I abstract rewrite system is carrier set with binary relation

I . . . is terminating if there are no in�nite rewrite sequences

I . . . is con�uent if ∗R← · →∗R ⊆ ↓R
I . . . is complete if terminating and con�uent

Example
rewrite system R

I rewrite sequence:

R R R

R
∗

I R is terminating

I R is con�uent

e.g. R
∗ and R

∗

but also R
∗ and R

∗

9



Abstract Rewriting

I abstract rewrite system is carrier set with binary relation

I . . . is terminating if there are no in�nite rewrite sequences

I . . . is con�uent if ∗R← · →∗R ⊆ ↓R
I . . . is complete if terminating and con�uent

Example
rewrite system R

I rewrite sequence:

R R R R
∗

I R is terminating

I R is con�uent

e.g. R
∗ and R

∗

but also R
∗ and R

∗

9



Abstract Rewriting

I abstract rewrite system is carrier set with binary relation

I . . . is terminating if there are no in�nite rewrite sequences

I . . . is con�uent if ∗R← · →∗R ⊆ ↓R
I . . . is complete if terminating and con�uent

Example
rewrite system R

I rewrite sequence:

R R R R
∗

I R is terminating

I R is con�uent

e.g. R
∗ and R

∗

but also R
∗ and R

∗

9



Abstract Rewriting

I abstract rewrite system is carrier set with binary relation

I . . . is terminating if there are no in�nite rewrite sequences

I . . . is con�uent if ∗R← · →∗R ⊆ ↓R
I . . . is complete if terminating and con�uent

Example
rewrite system R

I rewrite sequence:

R R R R
∗

I R is not terminating:

R R R R R · · ·

I R is con�uent

e.g. R
∗ and R

∗

but also R
∗ and R

∗

9



Abstract Rewriting

I abstract rewrite system is carrier set with binary relation

I . . . is terminating if there are no in�nite rewrite sequences

I . . . is con�uent if ∗R← · →∗R ⊆ ↓R
I . . . is complete if terminating and con�uent

Example
rewrite system R

I rewrite sequence:

R R R R
∗

I R is terminating

I R is con�uent

e.g. R
∗ and R

∗

but also R
∗ and R

∗

9



Abstract Rewriting

I abstract rewrite system is carrier set with binary relation

I . . . is terminating if there are no in�nite rewrite sequences

I . . . is con�uent if ∗R← · →∗R ⊆ →∗R · ∗R←

I . . . is complete if terminating and con�uent

Example
rewrite system R

I rewrite sequence:

R R R R
∗

I R is terminating

I R is con�uent

e.g. R
∗ and R

∗

but also R
∗ and R

∗

9



Abstract Rewriting

I abstract rewrite system is carrier set with binary relation

I . . . is terminating if there are no in�nite rewrite sequences

I . . . is con�uent if ∗R← · →∗R ⊆ ↓R

I . . . is complete if terminating and con�uent

Example
rewrite system R

I rewrite sequence:

R R R R
∗

I R is terminating

I R is con�uent

e.g. R
∗ and R

∗

but also R
∗ and R

∗

9



Abstract Rewriting

I abstract rewrite system is carrier set with binary relation

I . . . is terminating if there are no in�nite rewrite sequences

I . . . is con�uent if ∗R← · →∗R ⊆ ↓R

I . . . is complete if terminating and con�uent

Example
rewrite system R

I rewrite sequence:

R R R R
∗

I R is terminating

I R is con�uent

e.g. R
∗ and R

∗

but also R
∗ and R

∗

9



Abstract Rewriting

I abstract rewrite system is carrier set with binary relation

I . . . is terminating if there are no in�nite rewrite sequences

I . . . is con�uent if ∗R← · →∗R ⊆ ↓R

I . . . is complete if terminating and con�uent

Example
rewrite system R

I rewrite sequence:

R R R R
∗

I R is terminating

I R is con�uent

e.g. R
∗ and R

∗ but also R
∗ and R

∗

9



Abstract Rewriting

I abstract rewrite system is carrier set with binary relation

I . . . is terminating if there are no in�nite rewrite sequences

I . . . is con�uent if ∗R← · →∗R ⊆ ↓R
I . . . is complete if terminating and con�uent

Example
rewrite system R

I rewrite sequence:

R R R R
∗

I R is terminating

I R is con�uent

e.g. R
∗ and R

∗ but also R
∗ and R

∗

9



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . .

and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0)))

x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite step

s(s(0)) + s(s(s(0)))

→R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . .

and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0)))

x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite step

s(s(0)) + s(s(s(0)))

→R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0)))

x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite step

s(s(0)) + s(s(s(0)))

→R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0)))

x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite step

s(s(0)) + s(s(s(0)))

→R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite step

s(s(0)) + s(s(s(0)))

→R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite step

s(s(0)) + s(s(s(0)))

→R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite step

s(s(0)) + s(s(s(0)))

→R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite step

s(s(0)) + s(s(s(0)))

→R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite step

s(s(0)) + s(s(s(0)))

→R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite step

s(s(0)) + s(s(s(0))) →R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite sequence

s(s(0)) + s(s(s(0))) →R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite sequence

s(s(0)) + s(s(s(0))) →R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite sequence

s(s(0)) + s(s(s(0))) →R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite sequence

s(s(0)) + s(s(s(0))) →R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite sequence

s(s(0)) + s(s(s(0))) →R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Term Rewriting

I assume term structure on objects to rewrite

I rewrite rule is pair of terms `→ r

I term rewrite system (TRS) is set of rewrite rules

I rewrite step applies rewrite rule using substitution and in context

Example

I function symbols 0, s, + . . . and variables: x, y, z, . . .

I terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) 0 + y

I rewrite rules R:
0 + x → x s(x) + y → s(x + y)

I rewrite sequence

s(s(0)) + s(s(s(0))) →R s( s(0) + s(s(s(0))) )

→R s( s( 0 + s(s(s(0))) ) )

→R s(s( s(s(s(0))) ))

Fact
term rewriting is Turing complete model of computation

normal form

10



Properties of Interest

given TRS R,

I is every rewrite sequence terminating? termination

I if yes, how long do →R sequences get? complexity

I is rewriting deterministic? con�uence

I can we decide the equational theory ↔∗R? completion

I is the �rst-order theory of →R decidable? decidability

I are two given rewrite sequences equivalent? proof terms

11



Properties of Interest

given TRS R,

I is every rewrite sequence terminating? termination

I if yes, how long do →R sequences get? complexity

I is rewriting deterministic? con�uence

I can we decide the equational theory ↔∗R? completion

I is the �rst-order theory of →R decidable? decidability

I are two given rewrite sequences equivalent? proof terms

11



Properties of Interest

given TRS R,

I is every rewrite sequence terminating? termination

I if yes, how long do →R sequences get? complexity

I is rewriting deterministic? con�uence

I can we decide the equational theory ↔∗R? completion

I is the �rst-order theory of →R decidable? decidability

I are two given rewrite sequences equivalent? proof terms

11



Properties of Interest

given TRS R,

I is every rewrite sequence terminating? termination

I if yes, how long do →R sequences get? complexity

I is rewriting deterministic? con�uence

I can we decide the equational theory ↔∗R? completion

I is the �rst-order theory of →R decidable? decidability

I are two given rewrite sequences equivalent? proof terms

11



Properties of Interest

given TRS R,

I is every rewrite sequence terminating? termination

I if yes, how long do →R sequences get? complexity

I is rewriting deterministic? con�uence

I can we decide the equational theory ↔∗R? completion

I is the �rst-order theory of →R decidable? decidability

I are two given rewrite sequences equivalent? proof terms

11



Properties of Interest

given TRS R,

I is every rewrite sequence terminating? termination

I if yes, how long do →R sequences get? complexity

I is rewriting deterministic? con�uence

I can we decide the equational theory ↔∗R? completion

I is the �rst-order theory of →R decidable? decidability

I are two given rewrite sequences equivalent? proof terms

11



Formal Analysis Technologies

12



Formal Analysis Technologies

12



Outline

Motivating Examples

Term Rewriting

Tools

Formalization and Certi�cation

Conclusion

13



Termination

TTT2: Tyrolean Termination Tool 2

input: TRS R
output: YES + termination proof, or NO + counterexample

R
YES

?

NO

Korp et al., Tyrolean Termination Tool 2, 2009. 14



Termination

TTT2: Tyrolean Termination Tool 2

input: TRS R
output: YES + termination proof, or NO + counterexample

R
YES

?

NO

De�nition

TRS R is terminating if @ t1 → t2 → t3 → . . .

14



Termination

TTT2: Tyrolean Termination Tool 2

input: TRS R
output: YES + termination proof, or NO + counterexample

R
YES

?

NO

Example (Addition)

0 + x → x s(x) + y → s(x + y)

14



Termination

TTT2: Tyrolean Termination Tool 2

input: TRS R
output: YES + termination proof, or NO + counterexample

R
YES

?

NO

Example (Addition)

0 + x → x s(x) + y → s(x + y)

14



Termination

TTT2: Tyrolean Termination Tool 2

input: TRS R
output: YES + termination proof, or NO + counterexample

R
YES

?

NO

Example (Simple Game)

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

14



Termination

TTT2: Tyrolean Termination Tool 2

input: TRS R
output: YES + termination proof, or NO + counterexample

R
YES

?

NO

Example (Simple Game)

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

14



Termination

TTT2: Tyrolean Termination Tool 2

input: TRS R
output: YES + termination proof, or NO + counterexample

R
YES

?

NO

Example (Sieve of Eratosthenes)

primes→ sieve(from(s(s(0)))) sieve(0 : y)→ sieve(y)

from(x) → x : from(s(x)) sieve(s(x) : y)→ s(x) : sieve(�lter(x , y , x))

hd(x : y)→ x �lter(0, y : z ,w)→ 0 : �lter(w , z ,w)

tl(x : y)→ y �lter(s(x), y : z ,w)→ y : �lter(x , z ,w)
14



Termination

TTT2: Tyrolean Termination Tool 2

input: TRS R
output: YES + termination proof, or NO + counterexample

R
YES

?

NO

Example (Sieve of Eratosthenes)

primes→ sieve(from(s(s(0)))) sieve(0 : y)→ sieve(y)

from(x) → x : from(s(x)) sieve(s(x) : y)→ s(x) : sieve(�lter(x , y , x))

hd(x : y)→ x �lter(0, y : z ,w)→ 0 : �lter(w , z ,w)

tl(x : y)→ y �lter(s(x), y : z ,w)→ y : �lter(x , z ,w)
14



TTT2: Techniques

I dependency pair (DP) framework

I dependency graph approximations

I interpretation methods: polynomials, matrices, arctic, ordinals

I reduction orders: lexicographic path order, Knuth-Bendix order,

weighted path order

I labeling techniques: semantic labelling, matchbounds

I non-termination: loops and unfoldings

I . . .

Termination Competition

I annual competition

I term rewriting: standard TRS, string rewriting, relative termination,

termination modulo, conditional, innermost

I programs: C, logic programming, integer transition systems

I http://termination-portal.org

15

http://termination-portal.org


TTT2: Techniques

I dependency pair (DP) framework

I dependency graph approximations

I interpretation methods: polynomials, matrices, arctic, ordinals

I reduction orders: lexicographic path order, Knuth-Bendix order,

weighted path order

I labeling techniques: semantic labelling, matchbounds

I non-termination: loops and unfoldings

I . . .

Termination Competition

I annual competition

I term rewriting: standard TRS, string rewriting, relative termination,

termination modulo, conditional, innermost

I programs: C, logic programming, integer transition systems

I http://termination-portal.org

15

http://termination-portal.org


Research Example: Battle of Hercules and Hydra (1)

Hydra is a tree-shaped monster which grows whenever

Hercules chops o� a head:

If the cut-o� head has a grandparent in the tree then

the branch from this grandparent multiplies.

Hydra gets more and more angry: the number of copies

corresponds to the number of heads already cut o�.

Will Hydra ever die, such that Hercules wins?

16



Research Example: Battle of Hercules and Hydra (2)

process is modelled by TRS R:

◦(x)→ •(�(x)) •(�(x))→ �(•(•(x))) •(x)→ x

�(◦(x))→ ◦(�(x)) •(c1(x , y))→ c1(x ,H(x , y))

H(0, x)→ ◦(x) •(H(H(0, y), z))→ c1(y , z)

c2(x , y , z)→ ◦(H(y , z)) •(H(H(H(0, x), y), z))→ c2(x , y , z)

c1(y , z)→ ◦(z) •(c2(x , y , z))→ c2(x ,H(x , y), z)

Long-Standing Open Problem

show termination of R automatically

TTT2

Touzet, Encoding the Hydra Battle as a Rewrite System, 1998.

17

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR x y z)%0A(RULES%0Ao(x) -> a(l(x))%0Aa(l(x)) -> l(a(a(x)))%0Al(o(x)) -> o(l(x))%0Aa(x) -> x%0AH(0%2Cx) -> o(x)%0Aa(H(H(0%2Cy)%2Cz)) -> c1(y%2Cz)%0Aa(H(H(H(0%2Cx)%2Cy)%2Cz)) -> c2(x%2Cy%2Cz)%0Ac2(x%2Cy%2Cz) -> o(H(y%2Cz))%0Aa(c1(x%2Cy)) -> c1(x%2CH(x%2Cy))%0Aa(c2(x%2Cy%2Cz)) -> c2(x%2CH(x%2Cy)%2Cz)%0Ac1(y%2Cz) -> o(z)%0A)%0A(COMMENT%0ASystem H in Touzet%2C Encoding the Hydra Battle as a Rewrite System. MFCS 1998%3A 267-276%0A)%0A&strategy=hydra


Research Example: Battle of Hercules and Hydra (2)

process is modelled by TRS R:

◦(x)→ •(�(x)) •(�(x))→ �(•(•(x))) •(x)→ x

�(◦(x))→ ◦(�(x)) •(c1(x , y))→ c1(x ,H(x , y))

H(0, x)→ ◦(x) •(H(H(0, y), z))→ c1(y , z)

c2(x , y , z)→ ◦(H(y , z)) •(H(H(H(0, x), y), z))→ c2(x , y , z)

c1(y , z)→ ◦(z) •(c2(x , y , z))→ c2(x ,H(x , y), z)

Long-Standing Open Problem

show termination of R automatically

TTT2

17

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR x y z)%0A(RULES%0Ao(x) -> a(l(x))%0Aa(l(x)) -> l(a(a(x)))%0Al(o(x)) -> o(l(x))%0Aa(x) -> x%0AH(0%2Cx) -> o(x)%0Aa(H(H(0%2Cy)%2Cz)) -> c1(y%2Cz)%0Aa(H(H(H(0%2Cx)%2Cy)%2Cz)) -> c2(x%2Cy%2Cz)%0Ac2(x%2Cy%2Cz) -> o(H(y%2Cz))%0Aa(c1(x%2Cy)) -> c1(x%2CH(x%2Cy))%0Aa(c2(x%2Cy%2Cz)) -> c2(x%2CH(x%2Cy)%2Cz)%0Ac1(y%2Cz) -> o(z)%0A)%0A(COMMENT%0ASystem H in Touzet%2C Encoding the Hydra Battle as a Rewrite System. MFCS 1998%3A 267-276%0A)%0A&strategy=hydra


Research Example: Battle of Hercules and Hydra (2)

process is modelled by TRS R:

◦(x)→ •(�(x)) •(�(x))→ �(•(•(x))) •(x)→ x

�(◦(x))→ ◦(�(x)) •(c1(x , y))→ c1(x ,H(x , y))

H(0, x)→ ◦(x) •(H(H(0, y), z))→ c1(y , z)

c2(x , y , z)→ ◦(H(y , z)) •(H(H(H(0, x), y), z))→ c2(x , y , z)

c1(y , z)→ ◦(z) •(c2(x , y , z))→ c2(x ,H(x , y), z)

Long-Standing Open Problem

show termination of R automatically

TTT2

Zankl, Winkler, and Middeldorp, Beyond Polynomials and Peano Arithmetic � Automation of

Elementary and Ordinal Interpretations, 2015.
17

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR x y z)%0A(RULES%0Ao(x) -> a(l(x))%0Aa(l(x)) -> l(a(a(x)))%0Al(o(x)) -> o(l(x))%0Aa(x) -> x%0AH(0%2Cx) -> o(x)%0Aa(H(H(0%2Cy)%2Cz)) -> c1(y%2Cz)%0Aa(H(H(H(0%2Cx)%2Cy)%2Cz)) -> c2(x%2Cy%2Cz)%0Ac2(x%2Cy%2Cz) -> o(H(y%2Cz))%0Aa(c1(x%2Cy)) -> c1(x%2CH(x%2Cy))%0Aa(c2(x%2Cy%2Cz)) -> c2(x%2CH(x%2Cy)%2Cz)%0Ac1(y%2Cz) -> o(z)%0A)%0A(COMMENT%0ASystem H in Touzet%2C Encoding the Hydra Battle as a Rewrite System. MFCS 1998%3A 267-276%0A)%0A&strategy=hydra


Research Example: Battle of Hercules and Hydra (2)

process is modelled by TRS R:

◦(x)→ •(�(x)) •(�(x))→ �(•(•(x))) •(x)→ x

�(◦(x))→ ◦(�(x)) •(c1(x , y))→ c1(x ,H(x , y))

H(0, x)→ ◦(x) •(H(H(0, y), z))→ c1(y , z)

c2(x , y , z)→ ◦(H(y , z)) •(H(H(H(0, x), y), z))→ c2(x , y , z)

c1(y , z)→ ◦(z) •(c2(x , y , z))→ c2(x ,H(x , y), z)

Long-Standing Open Problem

show termination of R automatically TTT2

Zankl, Winkler, and Middeldorp, Beyond Polynomials and Peano Arithmetic � Automation of

Elementary and Ordinal Interpretations, 2015.
17

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR x y z)%0A(RULES%0Ao(x) -> a(l(x))%0Aa(l(x)) -> l(a(a(x)))%0Al(o(x)) -> o(l(x))%0Aa(x) -> x%0AH(0%2Cx) -> o(x)%0Aa(H(H(0%2Cy)%2Cz)) -> c1(y%2Cz)%0Aa(H(H(H(0%2Cx)%2Cy)%2Cz)) -> c2(x%2Cy%2Cz)%0Ac2(x%2Cy%2Cz) -> o(H(y%2Cz))%0Aa(c1(x%2Cy)) -> c1(x%2CH(x%2Cy))%0Aa(c2(x%2Cy%2Cz)) -> c2(x%2CH(x%2Cy)%2Cz)%0Ac1(y%2Cz) -> o(z)%0A)%0A(COMMENT%0ASystem H in Touzet%2C Encoding the Hydra Battle as a Rewrite System. MFCS 1998%3A 267-276%0A)%0A&strategy=hydra


Ctrl

tool to analyze properties of logically constrained rewrite systems:

allow rewrite rules with side conditions over decidable logic

Instcombine Pass in LLVM Middle End

I LLVM provides widely used compilation toolchain

I >1000 algebraic simpli�cations of expressions:
multiplications to shifts, reordering bitwise operations, . . .

I optimization set is community maintained, termination is crucial

Research Example: LLVM Expression Simpli�cation

simpli�cation seeking opportunity to replace mul by shift:

mul(sub(y , x), z)→ mul(sub(x , y), abs(z)) [z < 08 ∧ isPowerOf2(abs(z))]

Ctrl can detect loop:

mul(sub(18, 18), (−128)8)→R mul(sub(18, 18), abs((−128)8))

→calc mul(sub(18, 18), (−128)8)

Kop and Nishida, Constrained Term Rewriting tooL, 2015. 18



Ctrl

tool to analyze properties of logically constrained rewrite systems:

allow rewrite rules with side conditions over decidable logic

Instcombine Pass in LLVM Middle End

I LLVM provides widely used compilation toolchain

I >1000 algebraic simpli�cations of expressions:
multiplications to shifts, reordering bitwise operations, . . .

I optimization set is community maintained, termination is crucial

Research Example: LLVM Expression Simpli�cation

simpli�cation seeking opportunity to replace mul by shift:

mul(sub(y , x), z)→ mul(sub(x , y), abs(z)) [z < 08 ∧ isPowerOf2(abs(z))]

Ctrl can detect loop:

mul(sub(18, 18), (−128)8)→R mul(sub(18, 18), abs((−128)8))

→calc mul(sub(18, 18), (−128)8)

18



Ctrl

tool to analyze properties of logically constrained rewrite systems:

allow rewrite rules with side conditions over decidable logic

Instcombine Pass in LLVM Middle End

I LLVM provides widely used compilation toolchain

I >1000 algebraic simpli�cations of expressions:
multiplications to shifts, reordering bitwise operations, . . .

I optimization set is community maintained, termination is crucial

Research Example: LLVM Expression Simpli�cation

simpli�cation seeking opportunity to replace mul by shift:

mul(sub(y , x), z)→ mul(sub(x , y), abs(z)) [z < 08 ∧ isPowerOf2(abs(z))]

Ctrl can detect loop:

mul(sub(18, 18), (−128)8)→R mul(sub(18, 18), abs((−128)8))

→calc mul(sub(18, 18), (−128)8)

18



Ctrl

tool to analyze properties of logically constrained rewrite systems:

allow rewrite rules with side conditions over decidable logic

Instcombine Pass in LLVM Middle End

I LLVM provides widely used compilation toolchain

I >1000 algebraic simpli�cations of expressions:
multiplications to shifts, reordering bitwise operations, . . .

I optimization set is community maintained, termination is crucial

Research Example: LLVM Expression Simpli�cation

simpli�cation seeking opportunity to replace mul by shift:

mul(sub(y , x), z)→ mul(sub(x , y), abs(z)) [z < 08 ∧ isPowerOf2(abs(z))]

Ctrl can detect loop:

mul(sub(18, 18), (−128)8)→R mul(sub(18, 18), abs((−128)8))

→calc mul(sub(18, 18), (−128)8)

18



Ctrl

tool to analyze properties of logically constrained rewrite systems:

allow rewrite rules with side conditions over decidable logic

Instcombine Pass in LLVM Middle End

I LLVM provides widely used compilation toolchain

I >1000 algebraic simpli�cations of expressions:
multiplications to shifts, reordering bitwise operations, . . .

I optimization set is community maintained, termination is crucial

Research Example: LLVM Expression Simpli�cation

simpli�cation seeking opportunity to replace mul by shift:

mul(sub(y , x), z)→ mul(sub(x , y), abs(z)) [z < 08 ∧ isPowerOf2(abs(z))]

Ctrl can detect loop:

mul(sub(18, 18), (−128)8)→R mul(sub(18, 18), abs((−128)8))
→calc mul(sub(18, 18), (−128)8)

18



Ctrl

tool to analyze properties of logically constrained rewrite systems:

allow rewrite rules with side conditions over decidable logic

Instcombine Pass in LLVM Middle End

I LLVM provides widely used compilation toolchain

I >1000 algebraic simpli�cations of expressions:
multiplications to shifts, reordering bitwise operations, . . .

I optimization set is community maintained, termination is crucial

Research Example: LLVM Expression Simpli�cation

simpli�cation seeking opportunity to replace mul by shift:

mul(sub(y , x), z)→ mul(sub(x , y), abs(z)) [z < 08 ∧ isPowerOf2(abs(z))]

Ctrl can detect loop:

mul(sub(18, 18), (−128)8)→R mul(sub(18, 18), abs((−128)8))
→calc mul(sub(18, 18), (−128)8)

Nishida and Winkler, Loop Detection by Logically Constrained Term Rewriting. 2018. 18



Con�uence

CSI

input: term rewrite system R
output: YES + con�uence proof, or NO + counterexample

R
YES

?

NO

Nagele, Felgenhauer, and Middeldorp, CSI: New Evidence � A Progress Report, 2017. 19



Con�uence

CSI

input: term rewrite system R
output: YES + con�uence proof, or NO + counterexample

R
YES

?

NO

De�nition

TRS R is con�uent if ∗R← · →∗R ⊆ →∗R · ∗R←

·

· ·

·

∗ ∗

∗ ∗

19



Con�uence

CSI

input: term rewrite system R
output: YES + con�uence proof, or NO + counterexample

R
YES

?

NO

De�nition

TRS R is con�uent if ∗R← · →∗R ⊆ →∗R · ∗R←

·

· ·

·

∗ ∗

∗ ∗

19



Con�uence

CSI

input: term rewrite system R
output: YES + con�uence proof, or NO + counterexample

R
YES

?

NO

De�nition

TRS R is con�uent if ∗R← · →∗R ⊆ →∗R · ∗R←

·

· ·

·

∗ ∗

∗ ∗

19



Con�uence

CSI

input: term rewrite system R
output: YES + con�uence proof, or NO + counterexample

R
YES

?

NO

Example (Combinatory Logic)

I · x → x

(K · x) · y → x

((S · x) · y) · z → (x · z) · (y · z)
19



Con�uence

CSI

input: term rewrite system R
output: YES + con�uence proof, or NO + counterexample

R
YES

?

NO

Example (Combinatory Logic)

I · x → x

(K · x) · y → x

((S · x) · y) · z → (x · z) · (y · z)
19



Con�uence

CSI

input: term rewrite system R
output: YES + con�uence proof, or NO + counterexample

R
YES

?

NO

Example (Sieve of Eratosthenes)

primes→ sieve(from(s(s(0)))) sieve(0 : y)→ sieve(y)

from(x)→ x : from(s(x)) sieve(s(x) : y)→ s(x) : sieve(�lter(x , y , x))

hd(x : y)→ x �lter(0, y : z ,w)→ 0 : �lter(w , z ,w)

tl(x : y)→ y �lter(s(x), y : z ,w)→ y : �lter(x , z ,w) 19



Con�uence

CSI

input: term rewrite system R
output: YES + con�uence proof, or NO + counterexample

R
YES

?

NO

Example (Sieve of Eratosthenes)

primes→ sieve(from(s(s(0)))) sieve(0 : y)→ sieve(y)

from(x)→ x : from(s(x)) sieve(s(x) : y)→ s(x) : sieve(�lter(x , y , x))

hd(x : y)→ x �lter(0, y : z ,w)→ 0 : �lter(w , z ,w)

tl(x : y)→ y �lter(s(x), y : z ,w)→ y : �lter(x , z ,w) 19



Teaching Example: Simple Game

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

critical pairs:

• • ◦

••

◦◦

◦

◦ ◦ ◦

•◦ ◦•

•

• ◦ ◦

•◦ •◦

•

◦ ◦ •

•◦ ◦•

•

Lemma (Knuth and Bendix, 1970)

terminating TRS R is con�uent if s ↓R t for all critical pairs s ≈ t of R

De�nition (Critical Pair)

for `1 → r1 and `2 → r2 renamings of rules in R such that

I p ∈ PosF (`2),
I mgu σ uni�es `2|p and `1, and

I if p = ε then `1 → r1 and `2 → r2 are not variants

`2σ[r1σ]p ≈ r2σ is critical pair

, CP(R) are all critical pairs of R.

system is con�uent

initial example:

every strategy is winning strategy!

20



Teaching Example: Simple Game

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

critical pairs:

• • ◦

••

◦◦

◦

◦ ◦ ◦

•◦ ◦•

•

• ◦ ◦

•◦ •◦

•

◦ ◦ •

•◦ ◦•

•

Lemma (Knuth and Bendix, 1970)

terminating TRS R is con�uent if s ↓R t for all critical pairs s ≈ t of R

De�nition (Critical Pair)

for `1 → r1 and `2 → r2 renamings of rules in R such that

I p ∈ PosF (`2),
I mgu σ uni�es `2|p and `1, and

I if p = ε then `1 → r1 and `2 → r2 are not variants

`2σ[r1σ]p ≈ r2σ is critical pair

, CP(R) are all critical pairs of R.

system is con�uent

initial example:

every strategy is winning strategy!

20



Teaching Example: Simple Game

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

critical pairs:

• • ◦

••

◦◦

◦

◦ ◦ ◦

•◦ ◦•

•

• ◦ ◦

•◦ •◦

•

◦ ◦ •

•◦ ◦•

•

Lemma (Knuth and Bendix, 1970)

terminating TRS R is con�uent if s ↓R t for all critical pairs s ≈ t of R

De�nition (Critical Pair)

for `1 → r1 and `2 → r2 renamings of rules in R such that

I p ∈ PosF (`2),
I mgu σ uni�es `2|p and `1, and

I if p = ε then `1 → r1 and `2 → r2 are not variants

`2σ[r1σ]p ≈ r2σ is critical pair

, CP(R) are all critical pairs of R.

system is con�uent

initial example:

every strategy is winning strategy!

20



Teaching Example: Simple Game

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

critical pairs:

• • ◦

••

◦◦

◦

◦ ◦ ◦

•◦ ◦•

•

• ◦ ◦

•◦ •◦

•

◦ ◦ •

•◦ ◦•

•

Lemma (Knuth and Bendix, 1970)

terminating TRS R is con�uent if s ↓R t for all critical pairs s ≈ t of R

De�nition (Critical Pair)

for `1 → r1 and `2 → r2 renamings of rules in R such that

I p ∈ PosF (`2),
I mgu σ uni�es `2|p and `1, and

I if p = ε then `1 → r1 and `2 → r2 are not variants

`2σ[r1σ]p ≈ r2σ is critical pair, CP(R) are all critical pairs of R.

system is con�uent

initial example:

every strategy is winning strategy!

20



Teaching Example: Simple Game

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

critical pairs:

• • ◦

••

◦◦

◦

◦ ◦ ◦

•◦ ◦•

•

• ◦ ◦

•◦ •◦

•

◦ ◦ •

•◦ ◦•

•

Lemma (Knuth and Bendix, 1970)

terminating TRS R is con�uent if s ↓R t for all critical pairs s ≈ t of R

De�nition (Critical Pair)

for `1 → r1 and `2 → r2 renamings of rules in R such that

I p ∈ PosF (`2),
I mgu σ uni�es `2|p and `1, and

I if p = ε then `1 → r1 and `2 → r2 are not variants

`2σ[r1σ]p ≈ r2σ is critical pair, CP(R) are all critical pairs of R.

system is con�uent

initial example:

every strategy is winning strategy!

20



Teaching Example: Simple Game

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

critical pairs:

• • ◦

•• ◦◦

◦

◦ ◦ ◦

•◦ ◦•

•

• ◦ ◦

•◦ •◦

•

◦ ◦ •

•◦ ◦•

•

Lemma (Knuth and Bendix, 1970)

terminating TRS R is con�uent if s ↓R t for all critical pairs s ≈ t of R

De�nition (Critical Pair)

for `1 → r1 and `2 → r2 renamings of rules in R such that

I p ∈ PosF (`2),
I mgu σ uni�es `2|p and `1, and

I if p = ε then `1 → r1 and `2 → r2 are not variants

`2σ[r1σ]p ≈ r2σ is critical pair, CP(R) are all critical pairs of R.

system is con�uent

initial example:

every strategy is winning strategy!

20



Teaching Example: Simple Game

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

critical pairs:

• • ◦

•• ◦◦

◦

◦ ◦ ◦

•◦ ◦•

•

• ◦ ◦

•◦ •◦

•

◦ ◦ •

•◦ ◦•

•

Lemma (Knuth and Bendix, 1970)

terminating TRS R is con�uent if s ↓R t for all critical pairs s ≈ t of R

De�nition (Critical Pair)

for `1 → r1 and `2 → r2 renamings of rules in R such that

I p ∈ PosF (`2),
I mgu σ uni�es `2|p and `1, and

I if p = ε then `1 → r1 and `2 → r2 are not variants

`2σ[r1σ]p ≈ r2σ is critical pair, CP(R) are all critical pairs of R.

system is con�uent

initial example:

every strategy is winning strategy!

20



Teaching Example: Simple Game

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

critical pairs:

• • ◦

•• ◦◦

◦

◦ ◦ ◦

•◦ ◦•

•

• ◦ ◦

•◦ •◦

•

◦ ◦ •

•◦ ◦•

•

Lemma (Knuth and Bendix, 1970)

terminating TRS R is con�uent if s ↓R t for all critical pairs s ≈ t of R

De�nition (Critical Pair)

for `1 → r1 and `2 → r2 renamings of rules in R such that

I p ∈ PosF (`2),
I mgu σ uni�es `2|p and `1, and

I if p = ε then `1 → r1 and `2 → r2 are not variants

`2σ[r1σ]p ≈ r2σ is critical pair, CP(R) are all critical pairs of R.

system is con�uent

initial example:

every strategy is winning strategy!

20



Teaching Example: Simple Game

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

critical pairs:

• • ◦

•• ◦◦

◦

◦ ◦ ◦

•◦ ◦•

•

• ◦ ◦

•◦ •◦

•

◦ ◦ •

•◦ ◦•

•

Lemma (Knuth and Bendix, 1970)

terminating TRS R is con�uent if s ↓R t for all critical pairs s ≈ t of R

De�nition (Critical Pair)

for `1 → r1 and `2 → r2 renamings of rules in R such that

I p ∈ PosF (`2),
I mgu σ uni�es `2|p and `1, and

I if p = ε then `1 → r1 and `2 → r2 are not variants

`2σ[r1σ]p ≈ r2σ is critical pair, CP(R) are all critical pairs of R.

system is con�uent

initial example:

every strategy is winning strategy!

20



Teaching Example: Simple Game

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

critical pairs:

• • ◦

•• ◦◦

◦

◦ ◦ ◦

•◦ ◦•

•

• ◦ ◦

•◦ •◦

•

◦ ◦ •

•◦ ◦•

•

Lemma (Knuth and Bendix, 1970)

terminating TRS R is con�uent if s ↓R t for all critical pairs s ≈ t of R

De�nition (Critical Pair)

for `1 → r1 and `2 → r2 renamings of rules in R such that

I p ∈ PosF (`2),
I mgu σ uni�es `2|p and `1, and

I if p = ε then `1 → r1 and `2 → r2 are not variants

`2σ[r1σ]p ≈ r2σ is critical pair, CP(R) are all critical pairs of R.

system is con�uent

initial example:

every strategy is winning strategy!

20



CSI: Techniques

I decomposition techniques, e.g., layer systems

I transformation techniques, e.g. saturation

I criteria: Knuth-Bendix, orthogonality, Jouannaud-Kirchner, develop-

ment closedness, . . .

I support for higher-order systems

I criteria to establish unique normal form properties

Con�uence Competition

I annual competition

I categories: standard TRS, string rewriting, commutation, conditional

rewriting, higher-order rewriting, infeasibility, unique normal forms,

normal form property, ground con�uence, certi�ed con�uence

I http://project-coco.uibk.ac.at/

21

http://project-coco.uibk.ac.at/


CSI: Techniques

I decomposition techniques, e.g., layer systems

I transformation techniques, e.g. saturation

I criteria: Knuth-Bendix, orthogonality, Jouannaud-Kirchner, develop-

ment closedness, . . .

I support for higher-order systems

I criteria to establish unique normal form properties

Con�uence Competition

I annual competition

I categories: standard TRS, string rewriting, commutation, conditional

rewriting, higher-order rewriting, infeasibility, unique normal forms,

normal form property, ground con�uence, certi�ed con�uence

I http://project-coco.uibk.ac.at/

21

http://project-coco.uibk.ac.at/


Knuth-Bendix Completion

KBCV

, mkbtt, mædmax

input: set of equations E
output: terminating and con�uent TRS R such that ↔∗E =↔∗R

E R
?

22



Knuth-Bendix Completion

KBCV

, mkbtt, mædmax

input: set of equations E
output: terminating and con�uent TRS R such that ↔∗E =↔∗R

E R
?

De�nition

I TRS R is complete if terminating and con�uent

I TRS R is presentation of set of equations E if ↔∗E =↔∗R

Fact
in complete TRS every term has unique normal form

22



Knuth-Bendix Completion

KBCV

, mkbtt, mædmax

input: set of equations E
output: terminating and con�uent TRS R such that ↔∗E =↔∗R

E R
?

De�nition

I TRS R is complete if terminating and con�uent

I TRS R is presentation of set of equations E if ↔∗E =↔∗R

Fact
in complete TRS every term has unique normal form

22



Knuth-Bendix Completion

KBCV

, mkbtt, mædmax

input: set of equations E
output: terminating and con�uent TRS R such that ↔∗E =↔∗R

E R
?

De�nition

I TRS R is complete if terminating and con�uent

I TRS R is presentation of set of equations E if ↔∗E =↔∗R

Fact
in complete TRS every term has unique normal form 22



Knuth-Bendix Completion

KBCV

, mkbtt, mædmax

input: set of equations E
output: terminating and con�uent TRS R such that ↔∗E =↔∗R

E R
?

Example (Group Theory)

E : 1 · x ≈ x
(−x) · x ≈ 1

x · (y · z) ≈ (x · y) · z

R : −1→ 1 −(−x)→ x
1 · x → x (−x) · (x · y)→ y
x · 1→ x y · ((−y) · x)→ x

(−x) · x → 1 x · (y · z)→ (x · y) · z
x · (−x)→ 1 −(x · y)→ −y · (−x)

22



Knuth-Bendix Completion

KBCV

, mkbtt, mædmax

input: set of equations E
output: terminating and con�uent TRS R such that ↔∗E =↔∗R

E R
?

Example (Group Theory)

E : 1 · x ≈ x
(−x) · x ≈ 1

x · (y · z) ≈ (x · y) · z

R : −1→ 1 −(−x)→ x
1 · x → x (−x) · (x · y)→ y
x · 1→ x y · ((−y) · x)→ x

(−x) · x → 1 x · (y · z)→ (x · y) · z
x · (−x)→ 1 −(x · y)→ −y · (−x)

22



Knuth-Bendix Completion

KBCV, mkbtt, mædmax

input: set of equations E
output: terminating and con�uent TRS R such that ↔∗E =↔∗R

E R
?

I KBCV: step-by-step completion and visualization

I mkbtt: automatic completion using termination tools
I mædmax: equational theorem proving

22



Knuth-Bendix Completion

KBCV, mkbtt, mædmax

input: set of equations E
output: terminating and con�uent TRS R such that ↔∗E =↔∗R

E R
?

I KBCV: step-by-step completion and visualization
I mkbtt: automatic completion using termination tools

I mædmax: equational theorem proving

22



Knuth-Bendix Completion

KBCV, mkbtt, mædmax

input: set of equations E
output: terminating and con�uent TRS R such that ↔∗E =↔∗R

E R
?

I KBCV: step-by-step completion and visualization
I mkbtt: automatic completion using termination tools
I mædmax: equational theorem proving

22



Teaching Example: Cola Gene Puzzle (1)

Genetic engineers want to create cows that produce cola instead of milk.

To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT

Techniques exist to perform the following DNA transformations:

TCAT↔ T GAG↔ AG CTC↔ TC AGTA↔ A TAT↔ CT

Recently it has been discovered that the mad cow disease is caused by a

retrovirus with the following DNA sequence

CTGCTACTGACT

What now, if accidentally cows with this virus are created? According to

the engineers there is little risk because this never happened in their

experiments, but various action groups demand absolute assurance.
23



Teaching Example: Cola Gene Puzzle (2)

equational system of known DNA transformations E :
TCAT ≈ T GAG ≈ AG CTC ≈ TC AGTA ≈ A TAT ≈ CT

has complete presentation R:
GA→A AGT→AT ATA→A TCA→TA TAT→T CT→T

I (milk) TAGCTAGCTAGCT

∗←→
E

CTGACTGACT (cola gene)

TAGCTAGCTAGCT
!−→
R

T
!←−
R

CTGACTGACT

I (milk) TAGCTAGCTAGCT

6 ∗←→
E

CTGCTACTGACT (retrovirus)

TAGCTAGCTAGCT
!−→
R

T 6= TGT
!←−
R

CTGCTACTGACT

KBCV

24

http://cl-informatik.uibk.ac.at/software/kbcv/


Teaching Example: Cola Gene Puzzle (2)

equational system of known DNA transformations E :
TCAT ≈ T GAG ≈ AG CTC ≈ TC AGTA ≈ A TAT ≈ CT

has complete presentation R:
GA→A AGT→AT ATA→A TCA→TA TAT→T CT→T

I (milk) TAGCTAGCTAGCT

∗←→
E

CTGACTGACT (cola gene)

TAGCTAGCTAGCT
!−→
R

T
!←−
R

CTGACTGACT

I (milk) TAGCTAGCTAGCT

6 ∗←→
E

CTGCTACTGACT (retrovirus)

TAGCTAGCTAGCT
!−→
R

T 6= TGT
!←−
R

CTGCTACTGACT

KBCV

24

http://cl-informatik.uibk.ac.at/software/kbcv/


Teaching Example: Cola Gene Puzzle (2)

equational system of known DNA transformations E :
TCAT ≈ T GAG ≈ AG CTC ≈ TC AGTA ≈ A TAT ≈ CT

has complete presentation R:
GA→A AGT→AT ATA→A TCA→TA TAT→T CT→T

I (milk) TAGCTAGCTAGCT
∗←→
E

CTGACTGACT (cola gene)

TAGCTAGCTAGCT
!−→
R

T
!←−
R

CTGACTGACT

I (milk) TAGCTAGCTAGCT

6 ∗←→
E

CTGCTACTGACT (retrovirus)

TAGCTAGCTAGCT
!−→
R

T 6= TGT
!←−
R

CTGCTACTGACT

KBCV

24

http://cl-informatik.uibk.ac.at/software/kbcv/


Teaching Example: Cola Gene Puzzle (2)

equational system of known DNA transformations E :
TCAT ≈ T GAG ≈ AG CTC ≈ TC AGTA ≈ A TAT ≈ CT

has complete presentation R:
GA→A AGT→AT ATA→A TCA→TA TAT→T CT→T

I (milk) TAGCTAGCTAGCT
∗←→
E

CTGACTGACT (cola gene)

TAGCTAGCTAGCT
!−→
R

T
!←−
R

CTGACTGACT

I (milk) TAGCTAGCTAGCT 6 ∗←→
E

CTGCTACTGACT (retrovirus)

TAGCTAGCTAGCT
!−→
R

T 6= TGT
!←−
R

CTGCTACTGACT

KBCV

24

http://cl-informatik.uibk.ac.at/software/kbcv/


Teaching Example: Cola Gene Puzzle (2)

equational system of known DNA transformations E :
TCAT ≈ T GAG ≈ AG CTC ≈ TC AGTA ≈ A TAT ≈ CT

has complete presentation R:
GA→A AGT→AT ATA→A TCA→TA TAT→T CT→T

I (milk) TAGCTAGCTAGCT
∗←→
E

CTGACTGACT (cola gene)

TAGCTAGCTAGCT
!−→
R

T
!←−
R

CTGACTGACT

I (milk) TAGCTAGCTAGCT 6 ∗←→
E

CTGCTACTGACT (retrovirus)

TAGCTAGCTAGCT
!−→
R

T 6= TGT
!←−
R

CTGCTACTGACT

KBCV

24

http://cl-informatik.uibk.ac.at/software/kbcv/


Example (Chameleon Puzzle)

A colony of chameleons consists of 20 red, 18 blue, and 16 green animals.

Whenever two of di�erent color meet, both change to the third color.

Is it possible that all 54 chameleons become the same color?

mædmax produces TRS which is complete (modulo AC):

+ → +

x + y ≈ y + x

+ → +

(x + y) + z ≈ x + (y + z)

+ → +

+ + → + +

I initial colony: 20 + 18 + 16

→! 52 + 2

I 54 →! 54 54 →! 54 54 →! 54

25



Example (Chameleon Puzzle)

A colony of chameleons consists of 20 red, 18 blue, and 16 green animals.

Whenever two of di�erent color meet, both change to the third color.

Is it possible that all 54 chameleons become the same color?

mædmax produces TRS which is complete (modulo AC):

+ → +

x + y ≈ y + x

+ → +

(x + y) + z ≈ x + (y + z)

+ → +

+ + → + +

I initial colony: 20 + 18 + 16

→! 52 + 2

I 54 →! 54 54 →! 54 54 →! 54

25



Example (Chameleon Puzzle)

A colony of chameleons consists of 20 red, 18 blue, and 16 green animals.

Whenever two of di�erent color meet, both change to the third color.

Is it possible that all 54 chameleons become the same color?

mædmax produces TRS which is complete (modulo AC):

+ → + x + y ≈ y + x

+ → + (x + y) + z ≈ x + (y + z)

+ → +

+ + → + +

I initial colony: 20 + 18 + 16

→! 52 + 2

I 54 →! 54 54 →! 54 54 →! 54

25



Example (Chameleon Puzzle)

A colony of chameleons consists of 20 red, 18 blue, and 16 green animals.

Whenever two of di�erent color meet, both change to the third color.

Is it possible that all 54 chameleons become the same color?

mædmax produces TRS which is complete (modulo AC):

+ → + x + y ≈ y + x

+ → + (x + y) + z ≈ x + (y + z)

+ → + + + → + +

I initial colony: 20 + 18 + 16

→! 52 + 2

I 54 →! 54 54 →! 54 54 →! 54

25



Example (Chameleon Puzzle)

A colony of chameleons consists of 20 red, 18 blue, and 16 green animals.

Whenever two of di�erent color meet, both change to the third color.

Is it possible that all 54 chameleons become the same color?

mædmax produces TRS which is complete (modulo AC):

+ → + x + y ≈ y + x

+ → + (x + y) + z ≈ x + (y + z)

+ → + + + → + +

I initial colony: 20 + 18 + 16

→! 52 + 2

I 54 →! 54 54 →! 54 54 →! 54

25



Example (Chameleon Puzzle)

A colony of chameleons consists of 20 red, 18 blue, and 16 green animals.

Whenever two of di�erent color meet, both change to the third color.

Is it possible that all 54 chameleons become the same color?

mædmax produces TRS which is complete (modulo AC):

+ → + x + y ≈ y + x

+ → + (x + y) + z ≈ x + (y + z)

+ → + + + → + +

I initial colony: 20 + 18 + 16 →! 52 + 2

I 54 →! 54 54 →! 54 54 →! 54

25



Example (Chameleon Puzzle)

A colony of chameleons consists of 20 red, 18 blue, and 16 green animals.

Whenever two of di�erent color meet, both change to the third color.

Is it possible that all 54 chameleons become the same color?

mædmax produces TRS which is complete (modulo AC):

+ → + x + y ≈ y + x

+ → + (x + y) + z ≈ x + (y + z)

+ → + + + → + +

I initial colony: 20 + 18 + 16 →! 52 + 2

I 54 →! 54 54 →! 54 54 →! 54

25



Maximal Ordered Completion

R ⊆ E ∪ E−1

success?

R

E := E ∪ SE

no

E

yes

SAT/UNSAT

Klein and Hirokawa, Maximal Completion, 2011.

maxSAT solver

undecidable

26



Maximal Ordered Completion

R ⊆ E ∪ E−1

success?

R

E := E ∪ SE

no

E

yes

SAT/UNSAT

Procedure (equations only)
0 initialize equations E to input equalities E0

1 guess terminating rewrite system R from E
2 check whether ground complete

3 add some critical pairs SE ⊆ CP(R∪ E)

and SI ⊆ CP(R∪ E , I),
repeat from 1

maxSAT solver

undecidable

26



Maximal Ordered Completion

R ⊆ E ∪ E−1

success?

R

E := E ∪ SE

no

E

yes

SAT/UNSAT

Procedure (equations only)
0 initialize equations E to input equalities E0
1 guess terminating rewrite system R from E

2 check whether ground complete

3 add some critical pairs SE ⊆ CP(R∪ E)

and SI ⊆ CP(R∪ E , I),
repeat from 1

maxSAT solver

undecidable

26



Maximal Ordered Completion

R ⊆ E ∪ E−1

success?

R

E := E ∪ SE

no

E yes

SAT/UNSAT

Procedure (equations only)
0 initialize equations E to input equalities E0
1 guess terminating rewrite system R from E
2 check whether ground complete

3 add some critical pairs SE ⊆ CP(R∪ E)

and SI ⊆ CP(R∪ E , I),
repeat from 1

maxSAT solver

undecidable

26



Maximal Ordered Completion

R ⊆ E ∪ E−1

success?

R

E := E ∪ SE

no

E yes

SAT/UNSAT

Procedure (equations only)
0 initialize equations E to input equalities E0
1 guess terminating rewrite system R from E
2 check whether ground complete

3 add some critical pairs SE ⊆ CP(R∪ E)

and SI ⊆ CP(R∪ E , I),
repeat from 1

maxSAT solver

undecidable

26



Maximal Ordered Completion

R ⊆ E ∪ E−1

success?

R

E := E ∪ SE

no

E yes

SAT/UNSAT

Procedure (equations only)
0 initialize equations E to input equalities E0
1 guess terminating rewrite system R from E
2 check whether ground complete

3 add some critical pairs SE ⊆ CP(R∪ E)

and SI ⊆ CP(R∪ E , I),
repeat from 1

maxSAT solver

undecidable

26



Maximal Ordered Completion

R ⊆ E ∪ E−1

success?

R

E := E ∪ SE

no

E yes

SAT/UNSAT

Procedure (equations only)
0 initialize equations E to input equalities E0
1 guess terminating rewrite system R from E
2 check whether ground complete

3 add some critical pairs SE ⊆ CP(R∪ E)

and SI ⊆ CP(R∪ E , I)

,

repeat from 1

maxSAT solver

undecidable

26



Maximal Ordered Completion

R ⊆ E ∪ E−1

success?

R

E := E ∪ SE
I := I ∪ SI

no

(E , I)
yes

SAT/UNSAT

Procedure (with inequalities)
0 initialize equations and inequalities (E , I) to input (E0, {s 6≈ t})
1 guess terminating rewrite system R from E
2 check whether ground complete or inequality joinable

3 add some critical pairs SE ⊆ CP(R∪ E) and SI ⊆ CP(R∪ E , I),
repeat from 1

maxSAT solver

undecidable

26



Maximal Ordered Completion

R ⊆ E ∪ E−1

success?

R

E := E ∪ SE
I := I ∪ SI

no

(E , I)
yes

SAT/UNSAT

Remark
maximal ordered completion is con�ict-driven approach

maxSAT solver

undecidable

26



Maximal Ordered Completion

R ⊆ E ∪ E−1

success?

R

E := E ∪ SE
I := I ∪ SI

no

(E , I)
yes

SAT/UNSAT

Critical Aspects
I use maxSAT solver to �nd rewrite system maximizing some goal,

e.g. to orient as many equations as possible

I checking ground completeness is undecidable: overapproximate

Winkler, A Ground Joinability Criterion for Ordered Completion, 2017.

maxSAT solver

undecidable

26



Maximal Ordered Completion

R ⊆ E ∪ E−1

success?

R

E := E ∪ SE
I := I ∪ SI

no

(E , I)
yes

SAT/UNSAT

Critical Aspects
I use maxSAT solver to �nd rewrite system maximizing some goal,

e.g. to orient as many equations as possible

I checking ground completeness is undecidable: overapproximate

Winkler, A Ground Joinability Criterion for Ordered Completion, 2017.

maxSAT solver

undecidable

26



A Glimpse into the Guts

�nding R

certi�able proofs

Finding Rewrite Systems
I use SMT encodings of orders: LPO and KBO, linear polynomials

I optimization for maxSMT uses weighted combination of

(a) maximize R-reducible subset of E (b) maximize |R|
(c) maximize ground-joinable equations in E (d) minimize |CP(R)|

27



A Glimpse into the Guts

�nding R

certi�able proofs

Finding Rewrite Systems
I use SMT encodings of orders: LPO and KBO, linear polynomials

I optimization for maxSMT uses weighted combination of

(a) maximize R-reducible subset of E (b) maximize |R|
(c) maximize ground-joinable equations in E (d) minimize |CP(R)| 27



A Glimpse into the Guts

�nding R

success checkscerti�able proofs

Success Checks
I rewriting/uni�ability for goals

I narrowing for ground complete systems

I ground con�uence criteria [MartinNipkow90], [W17] (SAT problem)

27



A Glimpse into the Guts

�nding R
�lter

success checkscerti�able proofs

Avoiding the Blowup
I compute extended critical pairs wrt order orienting R
I �lter out equations known to be ground joinable [AHL03]

27



A Glimpse into the Guts

�nding R
�lter

indexing

success checkscerti�able proofs

Fingerprint Indexing
I for matching and uni�ability [Schulz12]

27



A Glimpse into the Guts

�nding R
�lter

indexing

success checkscerti�able proofs
restarts

Restarts
I do restarts keeping small lemmas when state is stuck

27



A Glimpse into the Guts

0+ x ≈ x
(−x) + x ≈ 0

x + (y + z) ≈ (x + y) + z
x + y ≈ y + x

x · (y · z) ≈ (x · y) · z
(x + y) · z ≈ (x · z) + (y · z)

a · 0 6≈ 0

<certificationProblem> <input>

<orderedCompletionInput>

<equations> <rules> ...</rules>

</equations> <trs> <rules>

<rule> <lhs> <funapp>

<name>mult</name>...<arg>

<funapp> <name>inv</name> <arg>

<var>Y</var> </arg> </funapp>

</arg> </funapp> </lhs> <rhs>

<funapp> <name>mult</name>

<arg> <var>X</var> </arg>

<arg> <var>Y</var> </arg>

</funapp> </rhs> </rule> </trs>

<proof> <orderedCompletionProof>

</orderedCompletionProof>

</proof> </certificationProblem>
�nding R

�lter
indexing

success checkscerti�able proofs
restarts

Certi�able Proofs
I support CPF output for unsatis�able and satis�able problems

I 90% of proofs validated by Isabelle-based certi�er CeTA [ST15]

(not all ground con�uence criteria are supported by CeTA yet)

27



A Glimpse into the Guts

0+ x ≈ x
(−x) + x ≈ 0

x + (y + z) ≈ (x + y) + z
x + y ≈ y + x

x · (y · z) ≈ (x · y) · z
(x + y) · z ≈ (x · z) + (y · z)

a · 0 6≈ 0

LPO

· > − > + > 0

�nding R
�lter

indexing

success checkscerti�able proofs
restarts

order generation

Order Generation Mode
I output �best� order found after some iterations

27



Complexity

TCT

input: term rewrite system R
output: derivational complexity dcR

R O(nk)
?

Avanzini, Moser, and Schaper, TcT: Tyrolean Complexity Tool, 2016. 28



Complexity

TCT

input: term rewrite system R
output: derivational complexity dcR

R O(nk)
?

De�nitions

I derivation height dhR(t) = max { n | ∃ u : t →n
R u }

I derivational complexity dcR(n)= max { dhR(t) | |t| = n }

28



Complexity

TCT

input: term rewrite system R
output: derivational complexity dcR

R O(nk)
?

De�nitions

I derivation height dhR(t) = max { n | ∃ u : t →n
R u }

I derivational complexity dcR(n)= max { dhR(t) | |t| = n }

28



Complexity

TCT

input: term rewrite system R
output: derivational complexity dcR

R O(nk)
?

Example

[] @ xs → xs (x : xs) @ ys → x : (xs @ ys)

�atten([])→ [] �atten(x : xs)→ x @ �atten(xs)

28



Complexity

TCT

input: term rewrite system R
output: derivational complexity dcR

R O(n2)
?

Example

[] @ xs → xs (x : xs) @ ys → x : (xs @ ys)

�atten([])→ [] �atten(x : xs)→ x @ �atten(xs)

28



Complexity

TCT

input: term rewrite system R
output: derivational complexity dcR

R O(n2)
?

Example (Sieve of Eratosthenes)

I system is innermost terminating
I can analyze innermost complexity

TcT

28

http://colo6-c703.uibk.ac.at/tct/tct-trs/


Proof Terms

ProTeM

tool to create proof terms from rewrite steps and manipulate them

R
∗−→

A

29



Proof Terms

ProTeM

tool to create proof terms from rewrite steps and manipulate them

R
∗−→

A

Proof Terms

I representation of rewrite sequences as terms

I admit concise analysis of equivalence of rewrite sequences

29



Proof Terms

ProTeM

tool to create proof terms from rewrite steps and manipulate them

R
∗−→

A

Proof Terms

I representation of rewrite sequences as terms

I admit concise analysis of equivalence of rewrite sequences

29



Proof Terms

ProTeM

tool to create proof terms from rewrite steps and manipulate them

R
∗−→

A

Proof Terms

I representation of rewrite sequences as terms

I admit concise analysis of equivalence of rewrite sequences

August 28 @ CADE: Presentation by Christina Kohl

composition of proof terms and implementation in ProTeM

29



Proof Terms

ProTeM

tool to create proof terms from rewrite steps and manipulate them

R
∗−→

A

Proof Terms

I representation of rewrite sequences as terms

I admit concise analysis of equivalence of rewrite sequences

August 28 @ CADE: Presentation by Christina Kohl

composition of proof terms and implementation in ProTeM

29



Outline

Motivating Examples

Term Rewriting

Tools

Formalization and Certi�cation

Conclusion

30



why trust these tools?

31



The IsaFoR/CeTA Framework

literature tool

Isabelle/HOL

IsaFoR CeTA

algorithms

techniques

input system property

XML certi�cate

theorems proofs

code generation

accept reject

Thiemann and Sternagel, Certi�cation of Termination Proofs Using CeTA, 2009.

32



Certi�cation of Tool Output: Overview

I TTT2
standard TRS: 829 YES (750 ) 200 NO (193 )

standard SRS: 733 YES (670 ) 43 NO (24 )

I CSI

standard TRS: 42 YES (28 ) 33 NO (23 )

I TCT

TPDB: 203 YES (165 )

I KBCV

completion systems: 89 YES (89 )

I mædmax

TPTP: 112 SAT (69 ) 621 UNSAT (612 )

Data taken from Termination and Con�uence Competitions 2019, [AST15], [WM18], [SWZ15].

33



Outline

Motivating Examples

Term Rewriting

Tools

Formalization and Certi�cation

Conclusion

34



Conclusion

Summary

I rewrite tools for di�erent theorem proving tasks

I termination analysis I con�uence analysis

I Knuth-Bendix completion I complexity analysis

I certi�cation framework: Isabelle library IsaFoR and proof checker CeTA

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Tool Features Helpful for Students

I web interfaces I control over many options

35



Conclusion

Summary

I rewrite tools for di�erent theorem proving tasks

I termination analysis I con�uence analysis

I Knuth-Bendix completion I complexity analysis

I certi�cation framework: Isabelle library IsaFoR and proof checker CeTA

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Tool Features Helpful for Students

I web interfaces I control over many options

35



Conclusion

Summary

I rewrite tools for di�erent theorem proving tasks

I termination analysis I con�uence analysis

I Knuth-Bendix completion I complexity analysis

I certi�cation framework: Isabelle library IsaFoR and proof checker CeTA

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Tool Features Helpful for Students

I web interfaces I control over many options

35



Conclusion

Summary

I rewrite tools for di�erent theorem proving tasks

I termination analysis I con�uence analysis

I Knuth-Bendix completion I complexity analysis

I certi�cation framework: Isabelle library IsaFoR and proof checker CeTA

teaching

tools
students

m
ot
iv
at
es

write

help

`→ r

Tool Features Helpful for Students

I web interfaces I control over many options

35



Acknowledgements

Aart Middeldorp, Georg Moser, René Thiemann, Harald Zankl, Christian

Sternagel, Martin Korp, Friedrich Neurauter, Andreas Schnabl, Martin

Avanzini, Michael Schaper, Thomas Sternagel, Julian Nagele, Bertram

Felgenhauer, Cynthia Kop, Manuel Schneckenreither, David Obwaller, Se-

bastiaan Joosten, Akihisa Yamada, Ralph Bottesch, T. V. H. Prathamesh,

Franziska Rapp, Maria Schett, Max Haslbeck, Simon Legner, Christina

Kohl, Alexander Lochmann, Jonas Schöpf

36


	Motivation
	Motivating Examples
	Term Rewriting
	Tools
	Formalization and Certification
	Conclusion

