

Automation of Rewriting f for Fun in Research and Profit in Teaching

Sarah Winkler

8th International Workshop on Theorem Proving Components for Educational Software 25 August 2019, Natal

- \blacktriangleright automatic analysis of TRSs constitutes theorem proving
- \blacktriangleright rewriting is at heart of equational reasoning

- \blacktriangleright automatic analysis of TRSs constitutes theorem proving
- \blacktriangleright rewriting is at heart of equational reasoning

Teaching Term Rewriting

- ▶ annual course at University of Innsbruck taught by Aart Middeldorp
- ▶ since 2006: International Summer School on Rewriting

- \blacktriangleright automatic analysis of TRSs constitutes theorem proving
- \blacktriangleright rewriting is at heart of equational reasoning

Teaching Term Rewriting

- ▶ annual course at University of Innsbruck taught by Aart Middeldorp
- since 2006: International Summer School on Rewriting

- \triangleright automatic analysis of TRSs constitutes theorem proving
- rewriting is at heart of equational reasoning

Teaching Term Rewriting

- ▶ annual course at University of Innsbruck taught by Aart Middeldorp
- I since 2006: International Summer School on Rewriting

Rewrite Tools Developed @ Computational Logic Group

T_TT₂, T_CT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA, ConCon, MiniSmt, AutoStrat, Ctrl

- \triangleright automatic analysis of TRSs constitutes theorem proving
- rewriting is at heart of equational reasoning

Teaching Term Rewriting

- ▶ annual course at University of Innsbruck taught by Aart Middeldorp
- I since 2006: International Summer School on Rewriting

Rewrite Tools Developed @ Computational Logic Group

T_TT₂, T_CT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA, ConCon, MiniSmt, AutoStrat, Ctrl

- \triangleright automatic analysis of TRSs constitutes theorem proving
- rewriting is at heart of equational reasoning

Teaching Term Rewriting

- ▶ annual course at University of Innsbruck taught by Aart Middeldorp
- I since 2006: International Summer School on Rewriting

Rewrite Tools Developed @ Computational Logic Group

T_TT₂, T_CT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA, ConCon, MiniSmt, AutoStrat, Ctrl

- \triangleright automatic analysis of TRSs constitutes theorem proving
- rewriting is at heart of equational reasoning

Teaching Term Rewriting

- ▶ annual course at University of Innsbruck taught by Aart Middeldorp
- I since 2006: International Summer School on Rewriting

Rewrite Tools Developed @ Computational Logic Group

T_TT₂, T_CT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA, ConCon, MiniSmt, AutoStrat, Ctrl

- \triangleright automatic analysis of TRSs constitutes theorem proving
- rewriting is at heart of equational reasoning

Teaching Term Rewriting

- ▶ annual course at University of Innsbruck taught by Aart Middeldorp
- I since 2006: International Summer School on Rewriting

Rewrite Tools Developed @ Computational Logic Group

T_TT₂, T_CT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA, ConCon, MiniSmt, AutoStrat, Ctrl

- \triangleright automatic analysis of TRSs constitutes theorem proving
- rewriting is at heart of equational reasoning

Teaching Term Rewriting

- ▶ annual course at University of Innsbruck taught by Aart Middeldorp
- I since 2006: International Summer School on Rewriting

Rewrite Tools Developed @ Computational Logic Group

T_TT₂, T_CT, CSI, Cat, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA, ConCon, MiniSmt, AutoStrat, Ctrl

[Motivating Examples](#page-10-0)

[Term Rewriting](#page-44-0)

[Tools](#page-81-0)

Formalization and Certification

[Conclusion](#page-171-0)

Teaching Example 1: Cola Gene Puzzle

Genetic engineers want to create cows that produce cola instead of milk. To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT

Teaching Example 1: Cola Gene Puzzle

Genetic engineers want to create cows that produce cola instead of milk. To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT

Techniques exist to perform the following DNA transformations:

 $TCAT \leftrightarrow T$ GAG $\leftrightarrow AG$ CTC $\leftrightarrow TC$ AGTA $\leftrightarrow A$ TAT $\leftrightarrow CT$

Teaching Example 1: Cola Gene Puzzle

Genetic engineers want to create cows that produce cola instead of milk. To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT

Techniques exist to perform the following DNA transformations:

$TCAT \leftrightarrow T$ GAG $\leftrightarrow AG$ CTC $\leftrightarrow TC$ AGTA $\leftrightarrow A$ TAT $\leftrightarrow CT$

Recently it has been discovered that the mad cow disease is caused by a retrovirus with the following DNA sequence

CTGCTACTGACT

What now, if accidentally cows with this virus are created? According to the engineers there is little risk because this never happened in their experiments, but various action groups demand absolute assurance.

Teaching Example 2: Chameleon Puzzle

A colony of Brazilian chameleons consists of 20 red, 18 blue, and 16 green animals. Whenever two of different color meet, both change to the third color. Some time passes during which no chameleons are born or die nor do any enter or leave the colony.

Teaching Example 2: Chameleon Puzzle

A colony of Brazilian chameleons consists of 20 red, 18 blue, and 16 green animals. Whenever two of different color meet, both change to the third color. Some time passes during which no chameleons are born or die nor do any enter or leave the colony.

Is it possible that all 54 chameleons become the same color?

 \triangleright two-player game where state is sequence of black and white stones

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

 \blacktriangleright player who puts last white wins

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

 0.0000000000

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

 \cap \cap \bullet \cap player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

 \cap \cap \bullet \cap player 1 ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

 $\bullet \bullet \to \circ$ $\circ \circ \to \circ$ $\bullet \circ \to \bullet$ $\circ \bullet \to \bullet$

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

 $\bullet \bullet \to \circ$ $\circ \circ \to \circ$ $\bullet \circ \to \bullet$ $\circ \bullet \to \bullet$

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

- \triangleright two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

 $\bullet \bullet \to \circ$ $\circ \circ \to \circ$ $\bullet \circ \to \bullet$ $\circ \bullet \to \bullet$

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

 $0 \bullet \bullet 0 \bullet \bullet 0 \bullet \bullet \bullet \bullet$

- \blacktriangleright questions
	- \longrightarrow does the game terminate?

- \rightarrow two-player game where state is sequence of black and white stones
- \blacktriangleright allowed moves are

 $\bullet \bullet \to \circ$ $\circ \circ \to \circ$ $\bullet \circ \to \bullet$ $\circ \bullet \to \bullet$

- \blacktriangleright player who puts last white wins
- \blacktriangleright initial state

$0 \bullet \bullet 0 \bullet \bullet 0 \bullet \bullet \bullet \bullet$

- \blacktriangleright questions
	- \blacktriangleright does the game terminate?
	- \triangleright which strategies are winning strategies for player 2?

TRS R models sieve of Eratosthenes to enumerate prime numbers:

primes \rightarrow sieve(from(s(s(0)))) sieve(0: y) \rightarrow sieve(y) $from(x) \rightarrow x$: from($s(x)$) sieve($s(x)$: y) $\rightarrow s(x)$: sieve(filter(x, y, x)) $hd(x : y) \rightarrow x$ filter(0, y: z, w) \rightarrow 0: filter(w, z, w) tl(x: y) \rightarrow y filter(s(x), y: z, w) \rightarrow y: filter(x, z, w)

TRS R models sieve of Eratosthenes to enumerate prime numbers:

primes \rightarrow sieve(from(s(s(0)))) sieve(0: y) \rightarrow sieve(y) $from(x) \rightarrow x$: from($s(x)$) sieve($s(x): y \rightarrow s(x)$: sieve(filter(x, y, x)) $hd(x : y) \rightarrow x$ filter(0, y: z, w) \rightarrow 0: filter(w, z, w) $t|(x: y) \rightarrow y$ filter(s(x), y : z, w) $\rightarrow y$: filter(x, z, w)

Questions About (Functional) Programs

 \triangleright is the given program terminating?

TRS R models sieve of Eratosthenes to enumerate prime numbers:

primes \rightarrow sieve(from(s(s(0)))) sieve(0: y) \rightarrow sieve(y) $from(x) \rightarrow x$: from($s(x)$) sieve($s(x): y \rightarrow s(x)$: sieve(filter(x, y, x)) $hd(x : y) \rightarrow x$ filter(0, y: z, w) \rightarrow 0: filter(w, z, w) tl(x: y) \rightarrow y filter(s(x), y: z, w) \rightarrow y: filter(x, z, w)

Questions About (Functional) Programs

- \triangleright is the given program terminating?
- \blacktriangleright are results, if existent, unique?

TRS R models sieve of Eratosthenes to enumerate prime numbers:

primes \rightarrow sieve(from(s(s(0)))) sieve(0: y) \rightarrow sieve(y) $from(x) \rightarrow x$: from($s(x)$) sieve($s(x): y \rightarrow s(x)$: sieve(filter(x, y, x)) $hd(x : y) \rightarrow x$ filter(0, y : z, w) \rightarrow 0: filter(w, z, w) tl(x: v) → v filter(s(x), y : z, w) → y : filter(x, z, w)

Questions About (Functional) Programs

- \triangleright is the given program terminating?
- \blacktriangleright are results, if existent, unique?
- \triangleright what is the program's computational complexity, if it terminates?

[Motivating Examples](#page-10-0)

[Term Rewriting](#page-44-0)

[Tools](#page-81-0)

Formalization and Certification

[Conclusion](#page-171-0)

 \triangleright abstract rewrite system is carrier set with binary relation

Example rewrite system R

 \blacktriangleright abstract rewrite system is carrier set with binary relation

Example rewrite system R

 \blacktriangleright abstract rewrite system is carrier set with binary relation

Example rewrite system R

 \blacktriangleright rewrite sequence:

 \blacktriangleright abstract rewrite system is carrier set with binary relation

 \blacktriangleright rewrite sequence:

- \blacktriangleright abstract rewrite system is carrier set with binary relation
- \blacktriangleright . . . is terminating if there are no infinite rewrite sequences

- \triangleright abstract rewrite system is carrier set with binary relation
- \blacktriangleright is terminating if there are no infinite rewrite sequences

- \blacktriangleright abstract rewrite system is carrier set with binary relation
- \blacktriangleright . . . is terminating if there are no infinite rewrite sequences

- \triangleright abstract rewrite system is carrier set with binary relation
- \blacktriangleright is terminating if there are no infinite rewrite sequences
- ► is confluent if $\pi^* \leftarrow \cdots \rightarrow^*_{\mathcal{R}} \subseteq \rightarrow^*_{\mathcal{R}} \cdot^*_{\mathcal{R}} \leftarrow$

- \triangleright abstract rewrite system is carrier set with binary relation
- \blacktriangleright is terminating if there are no infinite rewrite sequences
- **►** is confluent if ${}_{\mathcal{R}}^{\ast}\leftarrow \cdot \rightarrow_{\mathcal{R}}^{\ast} \subseteq \downarrow_{\mathcal{R}}$

- \blacktriangleright abstract rewrite system is carrier set with binary relation
- \blacktriangleright is terminating if there are no infinite rewrite sequences
- ► is confluent if $\pi^* \leftarrow \cdot \rightarrow_{\mathcal{R}}^* \subseteq \downarrow_{\mathcal{R}}$

- \triangleright abstract rewrite system is carrier set with binary relation
- \blacktriangleright is terminating if there are no infinite rewrite sequences
- ► is confluent if $\pi^* \leftarrow \cdot \rightarrow_{\mathcal{R}}^* \subseteq \downarrow_{\mathcal{R}}$

- \triangleright abstract rewrite system is carrier set with binary relation
- \blacktriangleright is terminating if there are no infinite rewrite sequences
- ► is confluent if $\pi^* \leftarrow \cdot \rightarrow_{\mathcal{R}}^* \subseteq \downarrow_{\mathcal{R}}$
- \blacktriangleright is complete if terminating and confluent

 \triangleright assume term structure on objects to rewrite

 \blacktriangleright assume term structure on objects to rewrite

Example

 \blacktriangleright function symbols 0, s, + ...

 \blacktriangleright assume term structure on objects to rewrite

Example

In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots

 \blacktriangleright assume term structure on objects to rewrite

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- rerms 0 s(0) s(s(0)) s(s(s(0)))

 \blacktriangleright assume term structure on objects to rewrite

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- reterms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) $0 + y$

- \triangleright assume term structure on objects to rewrite
- **F** rewrite rule is pair of terms $\ell \to r$
- \triangleright term rewrite system (TRS) is set of rewrite rules

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- ight erms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) $0 + y$

- \triangleright assume term structure on objects to rewrite
- **F** rewrite rule is pair of terms $\ell \to r$
- \triangleright term rewrite system (TRS) is set of rewrite rules

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- ight erms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) $0 + y$
- \blacktriangleright rewrite rules \mathcal{R} :

$$
0 + x \to x \qquad \qquad \mathsf{s}(x) + y \to \mathsf{s}(x + y)
$$

- \triangleright assume term structure on objects to rewrite
- **F** rewrite rule is pair of terms $\ell \to r$
- \triangleright term rewrite system (TRS) is set of rewrite rules
- \triangleright rewrite step applies rewrite rule using substitution and in context

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) $0 + y$
- \blacktriangleright rewrite rules \mathcal{R} :

$$
0 + x \to x \qquad \qquad \mathsf{s}(x) + y \to \mathsf{s}(x + y)
$$

- \blacktriangleright assume term structure on objects to rewrite
- **F** rewrite rule is pair of terms $\ell \to r$
- \triangleright term rewrite system (TRS) is set of rewrite rules
- \triangleright rewrite step applies rewrite rule using substitution and in context

Example

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) $0 + y$
- rewrite rules \mathcal{R} :

$$
0 + x \rightarrow x
$$

$$
0 + x \rightarrow x \qquad \qquad \mathsf{s}(x) + y \rightarrow \mathsf{s}(x + y)
$$

 \blacktriangleright rewrite step

 $s(s(0)) + s(s(s(0)))$

- \triangleright assume term structure on objects to rewrite
- Follower rule is pair of terms $\ell \to r$
- term rewrite system (TRS) is set of rewrite rules
- \triangleright rewrite step applies rewrite rule using substitution and in context

Example

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- ight erms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) $0 + y$
- \blacktriangleright rewrite rules \mathcal{R} .

 $0 + x \rightarrow x$ s(x) + y \rightarrow s(x + y)

 \blacktriangleright rewrite step

 $s(s(0)) + s(s(s(0))) \rightarrow_{\mathcal{R}} s(s(0) + s(s(s(0))))$

- \triangleright assume term structure on objects to rewrite
- rewrite rule is pair of terms $\ell \to r$
- term rewrite system (TRS) is set of rewrite rules
- \triangleright rewrite step applies rewrite rule using substitution and in context

Example

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) $0 + y$
- rewrite rules $\cal R$:

$$
0 + x \rightarrow x \qquad \qquad \mathsf{s}(x) + y \rightarrow \mathsf{s}(x + y)
$$

 \blacktriangleright rewrite sequence

 $s(s(0)) + s(s(s(0))) \rightarrow_{\mathcal{R}} s(s(0) + s(s(s(0))))$

- \triangleright assume term structure on objects to rewrite
- Follower rule is pair of terms $\ell \to r$
- term rewrite system (TRS) is set of rewrite rules
- \triangleright rewrite step applies rewrite rule using substitution and in context

Example

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- ight erms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) $0 + y$
- \blacktriangleright rewrite rules \mathcal{R} :

 $0 + x \rightarrow x$ s(x) + y \rightarrow s(x + y)

 \blacktriangleright rewrite sequence

 $s(s(0)) + s(s(s(0))) \rightarrow_{\mathcal{R}} s(s(0) + s(s(s(0))))$ $\rightarrow_{\mathcal{R}}$ s(s(0 + s(s(s(0)))))

- \triangleright assume term structure on objects to rewrite
- rewrite rule is pair of terms $\ell \to r$
- term rewrite system (TRS) is set of rewrite rules
- \triangleright rewrite step applies rewrite rule using substitution and in context

Example

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) $0 + y$
- rewrite rules $\cal R$:

$$
0 + x \rightarrow x \qquad \qquad \mathsf{s}(x) + y \rightarrow \mathsf{s}(x + y)
$$

 \blacktriangleright rewrite sequence

$$
s(s(0)) + s(s(s(0))) \rightarrow_{\mathcal{R}} s(s(0) + s(s(s(0))))
$$

$$
\rightarrow_{\mathcal{R}} s(s(0) + s(s(s(0))))
$$

- \triangleright assume term structure on objects to rewrite
- rewrite rule is pair of terms $\ell \to r$
- term rewrite system (TRS) is set of rewrite rules
- \triangleright rewrite step applies rewrite rule using substitution and in context

Example

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) $0 + y$
- rewrite rules \mathcal{R} :

$$
0 + x \rightarrow |x| \qquad \qquad \mathsf{s}(x) + y \rightarrow \mathsf{s}(x + y)
$$

 \blacktriangleright rewrite sequence

 $s(s(0)) + s(s(s(0))) \rightarrow_{\mathcal{R}} s(s(0) + s(s(s(0))))$ \rightarrow _R s(s(0 + s(s(s(0)))) $\rightarrow_{\mathcal{R}}$ s(s(s(s(s(0)))))

- \triangleright assume term structure on objects to rewrite
- **F** rewrite rule is pair of terms $\ell \to r$
- \triangleright term rewrite system (TRS) is set of rewrite rules
- \triangleright rewrite step applies rewrite rule using substitution and in context

Example

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- terms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) $0 + y$
- rewrite rules $\cal R$:

$$
0 + x \rightarrow x \qquad \qquad \mathsf{s}(x) + y \rightarrow \mathsf{s}(x + y)
$$

 \blacktriangleright rewrite sequence

$$
s(s(0)) + s(s(s(0))) \rightarrow_{\mathcal{R}} s(s(0) + s(s(s(0))))
$$

$$
\rightarrow_{\mathcal{R}} s(s(0 + s(s(s(0)))) \underbrace{\overbrace{\text{normal form}}}
$$

$$
\rightarrow_{\mathcal{R}} s(s(s(s(s(0))))
$$
Term Rewriting

- \triangleright assume term structure on objects to rewrite
- **F** rewrite rule is pair of terms $\ell \to r$
- \triangleright term rewrite system (TRS) is set of rewrite rules
- \triangleright rewrite step applies rewrite rule using substitution and in context

Example

- In function symbols $0, s, + \ldots$ and variables: x, y, z, \ldots
- ight erms 0 s(0) s(s(0)) s(s(s(0))) x s(s(x)) $0 + y$
- \blacktriangleright rewrite rules \mathcal{R} .

$$
0 + x \rightarrow x \qquad \qquad \mathsf{s}(x) + y \rightarrow \mathsf{s}(x + y)
$$

 \blacktriangleright rewrite sequence

$$
s(s(0)) + s(s(s(0))) \rightarrow_{\mathcal{R}} s(s(0) + s(s(s(0))))
$$

$$
\rightarrow_{\mathcal{R}} s(s(0 + s(s(s(0))))
$$

$$
\rightarrow_{\mathcal{R}} s(s(s(s(s(0))))
$$

Fact

term rewriting is Turing complete model of computation

is every rewrite sequence terminating? The set of termination

- is every rewrite sequence terminating? The set of termination
- \triangleright if yes, how long do \rightarrow _R sequences get? complexity

- is every rewrite sequence terminating? The set of termination
- \triangleright if yes, how long do \rightarrow _R sequences get? complexity
- In is rewriting deterministic? Confluence

- \triangleright is every rewrite sequence terminating? termination
- \triangleright if yes, how long do \rightarrow _R sequences get? complexity
- In is rewriting deterministic? Confluence
- ► can we decide the equational theory $\leftrightarrow_{\mathcal{R}}^*$?

completion

- \triangleright is every rewrite sequence terminating? termination
	- \triangleright if yes, how long do \rightarrow _R sequences get? complexity
	- \triangleright is rewriting deterministic? \triangleright confluence
	- ► can we decide the equational theory $\leftrightarrow_{\mathcal{R}}^*$?
	- is the first-order theory of $\rightarrow_{\mathcal{R}}$ decidable? decidability

completion

- \triangleright is every rewrite sequence terminating? termination
	- if yes, how long do \rightarrow _R sequences get? complexity
	- \triangleright is rewriting deterministic? \triangleright confluence
	- can we decide the equational theory $\leftrightarrow_{\mathcal{R}}^*$?
	- is the first-order theory of $\rightarrow_{\mathcal{R}}$ decidable? decidability
	- are two given rewrite sequences equivalent? proof terms

completion

Formal Analysis Technologies

هدج رساً لذ با انداندانشر اجو دیسر دیگر **يىلغات ئىكەن ئىستەلقالا سائىسىدى** (11 تەرق كەلايلىر، فارمذته بسرائغونا زلانانيفعا يترز والعند كصنطان لسنر تسددان لتدوير كماة دعرواته تەرىپاطعان يىلادىلا ئائىد*ە ئۈچۈرەت بىكى*ن ئىبدا . الدكنسان لادت دغربوعي وعاقدته فاستوء موسطراتم مدان سناخلا تهند أه فلارسترآه لامتآ كمنتدفق لابت رسيم منله أو كرره سندسم لات مرب يتجرف ترساد بالعرب وكالاتاكا ىئەللىدىن تۈمرەك مەل دەپ ساتمان تىل تاسىل كىلەت تەق قاتا بىلام يتقا فلكه يبط سأرسا ربائسط يتقارب وأباتق ى
شەكا نىڭ ھەقىق مەن سۇ قەد فارىقلىغان. البناء خاعدكما تهدم المنازة كاستلويت نا تُغَامَرُكِنْنَا لِذَا لِادِلْ مِرْكِيْنَا بِالْحَرْوَاطَاتُ وَالشَّكَلَ لِلْمَ وة مزاهاندا فنانيرم مناالكناب ازعدا الولديكات الانكال المشرفان ذعن الملخ الماجع يكافقه والاغذكآ بتستغطوا لتكلما لمنامرهم استعمال مستعملات الاستخدام المراكز المستعمل المستعمل المستعمل المستعمل المستعمل المستعمل المستعمل المستعمل ال
المقال المشاركة المستقبل المستعمل المستعمل المستعمل المستقبل المستعمل المستقبل السلوسة.
المعضية الاحتفال 3 مسلم

Formal Analysis Technologies

.
هذه بها لذ اسما دار التر التحرية تردي -
سودبدل مغسد بعروا برقاستر وابره آستاة بسدد برعا معارضا
بین مناسبته که با سند آنها را کنسده آلایات و آورا الدین فارمذته بسرائغونا زلانانيفعا يترز والعند كصنطان لسنر تسددان لتدوير كماة دعرواته تەرىپاطعان يىلادىلا ئائىد*ە ئۈچۈرەت بىكى*ن ئىبدا . الدكنسان لادت دغربوعي وعاقدته فاستوء موسطراتم مدان سناخلا تهند أه فلارسترآه لامتآ كمنتدفق لابت رسيم منله أو كرره سندسم لات مرب يتجرف ترساد بالعرب وكالاتاكا ىئەللىدىن تۈمرەك مەل دەپ ساتمان تىل تاسىل كىلەت تەق قاتا بىلام يتقا فلكه يبط سأرسا ربائسط يتقارب وأباتق ى
شەكا نىڭ ھەقىق مەن سۇ قەد فارىقلىغان. البناء خاعدكما تهدم المنازة كاستلويت نا تُغَامَرُكِنْنَا لِذَا لِادِلْ مِرْكِيْنَا بِالْحَرْوَاطَاتُ وَالشَّكَلَ لِلْمَ وة مزاهاندا فنانيرم مناالكناب ازعدا الولديكات الاشكال المنشود أن الفراد الأبدي تتكلفت و الاتحاد المنظمة التي يتكال الكائن ترجمنا
القاتانياتنا سينز كم استرات وشعرة سعدته الاجتماع باسترساسك النيخ التائند و التركية
التاهند (تستعاد كم يسباني عدد الرميز الاخلاقات سعدة الم

[Motivating Examples](#page-10-0)

[Term Rewriting](#page-44-0)

[Tools](#page-81-0)

Formalization and Certification

[Conclusion](#page-171-0)

- T_T T₂: Tyrolean Termination Tool 2
- input: TRS R
- output: $YES + termination proof, or NO + counterexample$

Korp et al., Tyrolean Termination Tool 2, 2009. The state of the s

- T_T T₂: Tyrolean Termination Tool 2
- input: TRS R
- output: $YES + termination proof, or NO + counterexample$

Definition TRS R is terminating if \overrightarrow{A} $t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \ldots$

- T_T T₂: Tyrolean Termination Tool 2
- input: TRS R
- output: $YES + termination proof, or NO + counterexample$

Example (Addition)

 $0 + x \rightarrow x$ s(x) + y \rightarrow s(x + y)

- T_T T₂: Tyrolean Termination Tool 2
- input: TRS R
- output: $YES + termination proof, or NO + counterexample$

Example (Addition)

 $0 + x \rightarrow x$ s(x) + y \rightarrow s(x + y)

- T_T T₂: Tyrolean Termination Tool 2
- input: TRS R
- output: $YES + termination proof, or NO + counterexample$

- T_T T₂: Tyrolean Termination Tool 2
- input: TRS R
- output: $YES + termination proof, or NO + counterexample$

Example (Simple Game)

- T_T T₂: Tyrolean Termination Tool 2
- input: TRS R
- output: $YES + termination proof$, or $NO + counterexample$

Example (Sieve of Eratosthenes) primes \rightarrow sieve(from(s(s(0)))) sieve(0: y) \rightarrow sieve(y) $from(x) \rightarrow x$: from($s(x)$) sieve($s(x): y$) $\rightarrow s(x):$ sieve(filter(x, y, x)) $hd(x : y) \rightarrow x$ filter(0, y : z, w) \rightarrow 0: filter(w, z, w) tl(x: y) \rightarrow y filter(s(x), y: z, w) \rightarrow y: filter(x, z, w)

- T_T T₂: Tyrolean Termination Tool 2
- input: TRS R
- output: $YES + termination proof, or NO + counterexample$

Example (Sieve of Eratosthenes) primes \rightarrow sieve(from(s(s(0)))) sieve(0: y) \rightarrow sieve(y) $from(x) \rightarrow x \colon from(s(x))$ sieve $(s(x) \colon y) \rightarrow s(x) \colon$ sieve $(f \circ (x, y, x))$ $hd(x : y) \rightarrow x$ filter(0, y : z, w) \rightarrow 0: filter(w, z, w) tl(x: y) \rightarrow y filter(s(x), y: z, w) \rightarrow y: filter(x, z, w)

T_TT_2 : Techniques

- \blacktriangleright dependency pair (DP) framework
- \blacktriangleright dependency graph approximations
- \triangleright interpretation methods: polynomials, matrices, arctic, ordinals
- reduction orders: lexicographic path order, Knuth-Bendix order, weighted path order
- \blacktriangleright labeling techniques: semantic labelling, matchbounds
- \triangleright non-termination: loops and unfoldings

T_TT_2 : Techniques

- \blacktriangleright dependency pair (DP) framework
- \blacktriangleright dependency graph approximations
- \triangleright interpretation methods: polynomials, matrices, arctic, ordinals
- reduction orders: lexicographic path order, Knuth-Bendix order, weighted path order
- \blacktriangleright labeling techniques: semantic labelling, matchbounds
- I non-termination: loops and unfoldings
- \blacktriangleright

Termination Competition

- \blacktriangleright annual competition
- I term rewriting: standard TRS, string rewriting, relative termination, termination modulo, conditional, innermost
- \triangleright programs: C, logic programming, integer transition systems
- \blacktriangleright <http://termination-portal.org>

Hydra is a tree-shaped monster which grows whenever Hercules chops off a head:

If the cut-off head has a grandparent in the tree then the branch from this grandparent multiplies.

Hydra gets more and more angry: the number of copies corresponds to the number of heads already cut off.

Will Hydra ever die, such that Hercules wins?

process is modelled by TRS \mathcal{R} :

$$
\circ(x) \to \bullet(\square(x)) \qquad \bullet(\square(x)) \to \square(\bullet(\bullet(x))) \qquad \bullet(x) \to x
$$

$$
\square(\circ(x)) \to \circ(\square(x)) \qquad \bullet(\circ_1(x,y)) \to \circ_1(x,H(x,y))
$$

H(0,x) \to o(x) \qquad \bullet(H(H(0,y),z)) \to c_1(y,z)

$$
c_2(x,y,z) \to \circ(H(y,z)) \qquad \bullet(H(H(H(0,x),y),z)) \to c_2(x,y,z)
$$

$$
c_1(y,z) \to \circ(z) \qquad \bullet(c_2(x,y,z)) \to c_2(x,H(x,y),z)
$$

Touzet, Encoding the Hydra Battle as a Rewrite System, 1998.

process is modelled by TRS R .

$$
\circ(x) \to \bullet(\square(x)) \qquad \bullet(\square(x)) \to \square(\bullet(\bullet(x))) \qquad \bullet(x) \to x
$$

$$
\square(\circ(x)) \to \circ(\square(x)) \qquad \bullet(\circ_1(x,y)) \to \circ_1(x,H(x,y))
$$

H(0,x) \to o(x) \qquad \bullet(H(H(0,y),z)) \to \circ_1(y,z)

$$
\circ_2(x,y,z) \to \circ(H(y,z)) \qquad \bullet(H(H(H(0,x),y),z)) \to \circ_2(x,y,z)
$$

$$
\circ_1(y,z) \to \circ_2(z) \qquad \bullet(\circ_2(x,y,z)) \to \circ_2(x,H(x,y),z)
$$

Long-Standing Open Problem

show termination of R automatically

process is modelled by TRS \mathcal{R} :

$$
\circ(x) \to \bullet(\square(x)) \qquad \bullet(\square(x)) \to \square(\bullet(\bullet(x))) \qquad \bullet(x) \to x
$$

$$
\square(\circ(x)) \to \circ(\square(x)) \qquad \bullet(\circ_1(x,y)) \to \circ_1(x,H(x,y))
$$

H(0,x) \to o(x) \qquad \bullet(H(H(0,y),z)) \to c_1(y,z)

$$
c_2(x,y,z) \to \circ(H(y,z)) \qquad \bullet(H(H(H(0,x),y),z)) \to c_2(x,y,z)
$$

$$
c_1(y,z) \to \circ(z) \qquad \bullet(c_2(x,y,z)) \to c_2(x,H(x,y),z)
$$

Long-Standing Open Problem

show termination of R automatically

Zankl, Winkler, and Middeldorp, Beyond Polynomials and Peano Arithmetic - Automation of Elementary and Ordinal Interpretations, 2015.

process is modelled by TRS \mathcal{R} :

$$
\circ(x) \to \bullet(\square(x)) \qquad \bullet(\square(x)) \to \square(\bullet(\bullet(x))) \qquad \bullet(x) \to x
$$

$$
\square(\circ(x)) \to \circ(\square(x)) \qquad \bullet(\circ_1(x,y)) \to \circ_1(x,H(x,y))
$$

H(0,x) \to o(x) \qquad \bullet(H(H(0,y),z)) \to \circ_1(y,z)

$$
\circ_2(x,y,z) \to \circ(H(y,z)) \qquad \bullet(H(H(H(0,x),y),z)) \to \circ_2(x,y,z)
$$

$$
\circ_1(y,z) \to \circ_2(z) \qquad \bullet(\circ_2(x,y,z)) \to \circ_2(x,H(x,y),z)
$$

Long-Standing Open Problem

show termination of R automatically $\qquad \qquad \qquad$

Zankl, Winkler, and Middeldorp, Beyond Polynomials and Peano Arithmetic - Automation of Elementary and Ordinal Interpretations, 2015.

tool to analyze properties of logically constrained rewrite systems: allow rewrite rules with side conditions over decidable logic

Kop and Nishida, Constrained Term Rewriting tool, 2015.

tool to analyze properties of logically constrained rewrite systems: allow rewrite rules with side conditions over decidable logic

Instcombine Pass in LLVM Middle End

 \blacktriangleright LLVM provides widely used compilation toolchain

tool to analyze properties of logically constrained rewrite systems: allow rewrite rules with side conditions over decidable logic

Instcombine Pass in LLVM Middle End

- \blacktriangleright LLVM provides widely used compilation toolchain
- \blacktriangleright >1000 algebraic simplifications of expressions: multiplications to shifts, reordering bitwise operations, . . .

tool to analyze properties of logically constrained rewrite systems: allow rewrite rules with side conditions over decidable logic

Instcombine Pass in LLVM Middle End

- \blacktriangleright LLVM provides widely used compilation toolchain
- \blacktriangleright >1000 algebraic simplifications of expressions: multiplications to shifts, reordering bitwise operations, . . .
- \triangleright optimization set is community maintained, termination is crucial

tool to analyze properties of logically constrained rewrite systems: allow rewrite rules with side conditions over decidable logic

Instcombine Pass in LLVM Middle End

- \blacktriangleright LLVM provides widely used compilation toolchain
- \blacktriangleright >1000 algebraic simplifications of expressions: multiplications to shifts, reordering bitwise operations, . . .
- \triangleright optimization set is community maintained, termination is crucial

Research Example: LLVM Expression Simplication

simplification seeking opportunity to replace mul by shift:

 $mul(sub(y, x), z) \rightarrow mul(sub(x, y), abs(z)) [z < 0₈ \wedge isPowerOf2(abs(z))]$

tool to analyze properties of logically constrained rewrite systems: allow rewrite rules with side conditions over decidable logic

Instcombine Pass in LLVM Middle End

- \blacktriangleright LLVM provides widely used compilation toolchain
- $>$ 1000 algebraic simplifications of expressions: multiplications to shifts, reordering bitwise operations, . . .
- \triangleright optimization set is community maintained, termination is crucial

Research Example: LLVM Expression Simplication

simplification seeking opportunity to replace mul by shift:

 $mul(sub(y, x), z) \rightarrow mul(sub(x, y), abs(z)) [z < 0₈ \wedge isPowerOf2(abs(z))]$

Ctrl can detect loop:

$$
\begin{aligned} \mathsf{mul}(\mathsf{sub}(1_8,1_8),\textcolor{blue}{(-128)}_8) &\rightarrow_{\mathcal{R}} \mathsf{mul}(\mathsf{sub}(1_8,1_8),\mathsf{abs}(\textcolor{blue}{(-128)}_8)) \\ &\rightarrow_{\mathsf{calc}} \mathsf{mul}(\mathsf{sub}(1_8,1_8),\textcolor{blue}{(-128)}_8) \end{aligned}
$$

CSI

- input: term rewrite system R
- output: $YES + confluence proof, or NO + counterexample$

Nagele, Felgenhauer, and Middeldorp, CSI: New Evidence - A Progress Report, 2017. 2019

CSI

- input: term rewrite system R
- output: $YES + confluence proof, or NO + counterexample$

Definition TRS $\mathcal R$ is confluent if $\mathcal R^*{\leftarrow \cdots \rightarrow_\mathcal R^*} \subseteq {\rightarrow_\mathcal R^* \cdot \mathcal R^{\leftarrow \cdots}}$

CSI

- input: term rewrite system $\mathcal R$
- output: $YES + confluence proof, or NO + counterexample$

Definition
TRS R is confluent if
$$
\stackrel{*}{\mathcal{R}} \leftarrow \cdot \rightarrow^*_{\mathcal{R}} \subseteq \rightarrow^*_{\mathcal{R}} \cdot^*_{\mathcal{R}} \leftarrow
$$

CSI

- input: term rewrite system R
- output: $YES + confluence proof, or NO + counterexample$

CSI

- input: term rewrite system $\mathcal R$
- output: $YES + confluence proof, or NO + counterexample$

Example (Combinatory Logic)

$$
1 \cdot x \to x
$$

(K \cdot x) \cdot y \to x
((S \cdot x) \cdot y) \cdot z \to (x \cdot z) \cdot (y \cdot z)
Confluence

CSI

- input: term rewrite system $\mathcal R$
- output: $YES + confluence proof, or NO + counterexample$

Example (Combinatory Logic)

$$
1 \cdot x \to x
$$

(K \cdot x) \cdot y \to x
((S \cdot x) \cdot y) \cdot z \to (x \cdot z) \cdot (y \cdot z)

Confluence

CSI

- input: term rewrite system $\mathcal R$
- output: $YES + confluence proof, or NO + counterexample$

Example (Sieve of Eratosthenes)

primes \rightarrow sieve(from(s(s(0)))) sieve(0 : y) \rightarrow sieve(y) $from(x) \rightarrow x : from(s(x))$ sieve $(s(x) : y) \rightarrow s(x) : givenmath> \| then(x, y, x) \|$ $hd(x : y) \rightarrow x$ filter $(0, y : z, w) \rightarrow 0$: filter (w, z, w) tl(x : y) \rightarrow y filter(s(x), y : z, w) \rightarrow y : filter(x, z, w) 19

Confluence

CSI

- input: term rewrite system $\mathcal R$
- output: $YES + confluence proof, or NO + counterexample$

Example (Sieve of Eratosthenes)

primes \rightarrow sieve(from(s(s(0)))) sieve(0 : y) \rightarrow sieve(y) $from(x) \rightarrow x : from(s(x))$ sieve $(s(x) : y) \rightarrow s(x) : givenmath> \| then(x, y, x) \|$ $hd(x : y) \rightarrow x$ filter $(0, y : z, w) \rightarrow 0$: filter (w, z, w) tl(x : y) \rightarrow y filter(s(x), y : z, w) \rightarrow y : filter(x, z, w) 19

Lemma (Knuth and Bendix, 1970) terminating TRS R is confluent if $s \downarrow_{\mathcal{R}} t$ for all critical pairs $s \approx t$ of R

Lemma (Knuth and Bendix, 1970)

terminating TRS R is confluent if $s \downarrow_R t$ for all critical pairs $s \approx t$ of R

Definition (Critical Pair)

for $\ell_1 \rightarrow r_1$ and $\ell_2 \rightarrow r_2$ renamings of rules in R such that

- \blacktriangleright $p \in \mathcal{P}$ os $\mathcal{F}(\ell_2)$,
- **IF** mgu σ unifies $\ell_2|_p$ and ℓ_1 , and
- \triangleright if $p = \epsilon$ then $\ell_1 \to r_1$ and $\ell_2 \to r_2$ are not variants

 $\ell_2\sigma[r_1\sigma]_p \approx r_2\sigma$ is critical pair

Lemma (Knuth and Bendix, 1970)

terminating TRS R is confluent if $s \downarrow_R t$ for all critical pairs $s \approx t$ of R

Definition (Critical Pair)

for $\ell_1 \rightarrow r_1$ and $\ell_2 \rightarrow r_2$ renamings of rules in R such that

- \blacktriangleright $p \in \mathcal{P}$ os $\mathcal{F}(\ell_2)$,
- **IF** mgu σ unifies $\ell_2|_p$ and ℓ_1 , and
- **►** if $p = \epsilon$ then $\ell_1 \to r_1$ and $\ell_2 \to r_2$ are not variants

Lemma (Knuth and Bendix, 1970)

terminating TRS R is confluent if $s \downarrow_R t$ for all critical pairs $s \approx t$ of R

Definition (Critical Pair)

for $\ell_1 \rightarrow r_1$ and $\ell_2 \rightarrow r_2$ renamings of rules in R such that

- \blacktriangleright $p \in \mathcal{P}$ os $\mathcal{F}(\ell_2)$,
- **IF** mgu σ unifies $\ell_2|_p$ and ℓ_1 , and
- **►** if $p = \epsilon$ then $\ell_1 \to r_1$ and $\ell_2 \to r_2$ are not variants

Lemma (Knuth and Bendix, 1970)

terminating TRS R is confluent if $s \downarrow_R t$ for all critical pairs $s \approx t$ of R

Definition (Critical Pair)

for $\ell_1 \rightarrow r_1$ and $\ell_2 \rightarrow r_2$ renamings of rules in R such that

- \blacktriangleright $p \in \mathcal{P}$ os $\mathcal{F}(\ell_2)$,
- **IF** mgu σ unifies $\ell_2|_p$ and ℓ_1 , and
- **►** if $p = \epsilon$ then $\ell_1 \to r_1$ and $\ell_2 \to r_2$ are not variants

Lemma (Knuth and Bendix, 1970) terminating TRS R is confluent if s \downarrow _R t for all critical pairs s \approx t of R

Definition (Critical Pair)

for $\ell_1 \rightarrow r_1$ and $\ell_2 \rightarrow r_2$ renamings of rules in R such that

- \blacktriangleright $p \in \mathcal{P}$ os $\mathcal{F}(\ell_2)$,
- **IF** mgu σ unifies $\ell_2|_p$ and ℓ_1 , and
- **►** if $p = \epsilon$ then $\ell_1 \to r_1$ and $\ell_2 \to r_2$ are not variants

Lemma (Knuth and Bendix, 1970) terminating TRS R is confluent if s \downarrow _R t for all critical pairs s \approx t of R

Definition (Critical Pair)

for $\ell_1 \rightarrow r_1$ and $\ell_2 \rightarrow r_2$ renamings of rules in R such that

- \blacktriangleright $p \in \mathcal{P}$ os $\mathcal{F}(\ell_2)$,
- **IF** mgu σ unifies $\ell_2|_p$ and ℓ_1 , and
- \triangleright if $p = \epsilon$ then $\ell_1 \to r_1$ and $\ell_2 \to r_2$ are not variants

Lemma (Knuth and Bendix, 1970) terminating TRS R is confluent if s \downarrow _R t for all critical pairs s \approx t of R

Definition (Critical Pair)

for $\ell_1 \rightarrow r_1$ and $\ell_2 \rightarrow r_2$ renamings of rules in R such that

- \blacktriangleright $p \in \mathcal{P}$ os $\mathcal{F}(\ell_2)$,
- **IF** mgu σ unifies $\ell_2|_p$ and ℓ_1 , and
- \triangleright if $p = \epsilon$ then $\ell_1 \to r_1$ and $\ell_2 \to r_2$ are not variants

Lemma (Knuth and Bendix, 1970) terminating TRS R is confluent if s \downarrow _R t for all critical pairs s \approx t of R

Definition (Critical Pair)

for $\ell_1 \rightarrow r_1$ and $\ell_2 \rightarrow r_2$ renamings of rules in R such that

- \blacktriangleright $p \in \mathcal{P}$ os $\mathcal{F}(\ell_2)$,
- **IF** mgu σ unifies $\ell_2|_p$ and ℓ_1 , and
- if $p = \epsilon$ then $\ell_1 \rightarrow r_1$ and $\ell_2 \rightarrow r_2$ are not variants

CSI: Techniques

- \blacktriangleright decomposition techniques, e.g., layer systems
- \blacktriangleright transformation techniques, e.g. saturation
- F criteria: Knuth-Bendix, orthogonality, Jouannaud-Kirchner, development closedness, . . .
- \blacktriangleright support for higher-order systems
- \triangleright criteria to establish unique normal form properties

CSI: Techniques

- \blacktriangleright decomposition techniques, e.g., layer systems
- \blacktriangleright transformation techniques, e.g. saturation
- criteria: Knuth-Bendix, orthogonality, Jouannaud-Kirchner, development closedness, . . .
- \blacktriangleright support for higher-order systems
- \triangleright criteria to establish unique normal form properties

Confluence Competition

- \blacktriangleright annual competition
- \triangleright categories: standard TRS, string rewriting, commutation, conditional rewriting, higher-order rewriting, infeasibility, unique normal forms, normal form property, ground confluence, certified confluence
- \blacktriangleright <http://project-coco.uibk.ac.at/>

KBCV

- input: set of equations $\mathcal E$
- output: $\;$ terminating and confluent TRS $\cal R$ such that $\leftrightarrow_{\cal E}^*=\leftrightarrow_{\cal R}^*$

KBCV

- input: set of equations $\mathcal E$
- output: $\;$ terminating and confluent TRS $\cal R$ such that $\leftrightarrow_{\cal E}^*=\leftrightarrow_{\cal R}^*$

Definition

 \triangleright TRS R is complete if terminating and confluent

KBCV

- input: set of equations $\mathcal E$
- output: $\;$ terminating and confluent TRS $\cal R$ such that $\leftrightarrow_{\cal E}^*=\leftrightarrow_{\cal R}^*$

Definition

- \triangleright TRS R is complete if terminating and confluent
- ► TRS $\mathcal R$ is presentation of set of equations $\mathcal E$ if $\leftrightarrow_{\mathcal E}^* = \leftrightarrow_{\mathcal R}^*$

KBCV

- input: set of equations $\mathcal E$
- output: $\;$ terminating and confluent TRS $\cal R$ such that $\leftrightarrow_{\cal E}^*=\leftrightarrow_{\cal R}^*$

Definition

- \triangleright TRS R is complete if terminating and confluent
- ► TRS $\mathcal R$ is presentation of set of equations $\mathcal E$ if $\leftrightarrow_{\mathcal E}^* = \leftrightarrow_{\mathcal R}^*$

Fact

in complete TRS every term has unique normal form

KBCV

- input: set of equations $\mathcal E$
- output: $\;$ terminating and confluent TRS $\cal R$ such that $\leftrightarrow_{\cal E}^*=\leftrightarrow_{\cal R}^*$

Example (Group Theory)

$$
\mathcal{E}: \quad 1 \cdot x \approx x \quad \mathcal{R}: \quad -1 \to 1 \quad -(-x) \to x
$$
\n
$$
(-x) \cdot x \approx 1 \quad 1 \cdot x \to x \quad (-x) \cdot (x \cdot y) \to y
$$
\n
$$
x \cdot (y \cdot z) \approx (x \cdot y) \cdot z \quad x \cdot 1 \to x \quad y \cdot ((-y) \cdot x) \to x
$$
\n
$$
(-x) \cdot x \to 1 \quad x \cdot (y \cdot z) \to (x \cdot y) \cdot z
$$
\n
$$
x \cdot (-x) \to 1 \quad - (x \cdot y) \to -y \cdot (-x)
$$

KBCV

- input: set of equations $\mathcal E$
- output: $\;$ terminating and confluent TRS $\cal R$ such that $\leftrightarrow_{\cal E}^*=\leftrightarrow_{\cal R}^*$

Example (Group Theory)

$$
\mathcal{E}: \quad 1 \cdot x \approx x \quad \mathcal{R}: \quad -1 \to 1 \quad -(-x) \to x
$$
\n
$$
(-x) \cdot x \approx 1 \quad 1 \cdot x \to x \quad (-x) \cdot (x \cdot y) \to y
$$
\n
$$
x \cdot (y \cdot z) \approx (x \cdot y) \cdot z \quad x \cdot 1 \to x \quad y \cdot ((-y) \cdot x) \to x
$$
\n
$$
(-x) \cdot x \to 1 \quad x \cdot (y \cdot z) \to (x \cdot y) \cdot z
$$
\n
$$
x \cdot (-x) \to 1 \quad - (x \cdot y) \to -y \cdot (-x)
$$

- KBCV, mkbtt, mædmax
- input: set of equations $\mathcal E$
- output: $\;$ terminating and confluent TRS $\cal R$ such that $\leftrightarrow_{\cal E}^*=\leftrightarrow_{\cal R}^*$

KBCV: step-by-step completion and visualization

- KBCV, mkbtt, mædmax
- input: set of equations $\mathcal E$
- output: $\;$ terminating and confluent TRS $\cal R$ such that $\leftrightarrow_{\cal E}^*=\leftrightarrow_{\cal R}^*$

 $KBCV$: step-by-step completion and visualization mkbtt: automatic completion using termination tools

- KBCV, mkbtt, mædmax
- input: set of equations $\mathcal E$
- output: $\;$ terminating and confluent TRS $\cal R$ such that $\leftrightarrow_{\cal E}^*=\leftrightarrow_{\cal R}^*$

KBCV: step-by-step completion and visualization mkbtt: automatic completion using termination tools mædmax: equational theorem proving

Genetic engineers want to create cows that produce cola instead of milk. To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT

Techniques exist to perform the following DNA transformations:

$TCAT \leftrightarrow T$ GAG $\leftrightarrow AG$ CTC $\leftrightarrow TC$ AGTA $\leftrightarrow A$ TAT $\leftrightarrow CT$

Recently it has been discovered that the mad cow disease is caused by a retrovirus with the following DNA sequence

CTGCTACTGACT

What now, if accidentally cows with this virus are created? According to the engineers there is little risk because this never happened in their experiments, but various action groups demand absolute assurance.

equational system of known DNA transformations \mathcal{E} :

 $TCAT \approx T$ GAG \approx AG CTC \approx TC AGTA \approx A TAT \approx CT

equational system of known DNA transformations \mathcal{E} :

 $TCAT \approx T$ GAG \approx AG CTC \approx TC AGTA \approx A TAT \approx CT

has complete presentation $\mathcal R$.

 $GA \rightarrow A$ AGT $\rightarrow AT$ ATA $\rightarrow A$ TCA $\rightarrow TA$ TAT $\rightarrow T$ CT $\rightarrow T$

equational system of known DNA transformations \mathcal{E} :

 $TCAT \approx T$ GAG \approx AG CTC \approx TC AGTA \approx A TAT \approx CT

has complete presentation \mathcal{R} :

 $GA \rightarrow A$ AGT $\rightarrow AT$ ATA $\rightarrow A$ TCA $\rightarrow TA$ TAT $\rightarrow T$ CT $\rightarrow T$

► (milk) TAGCTAGCTAGCT $\stackrel{*}{\underset{\mathcal{E}}{\leftarrow}}$ CTGACTGACT (cola gene) TAGCTAGCTAGCT $\frac{1}{\mathcal{R}}$ T $\frac{1}{\mathcal{R}}$ CTGACTGACT

equational system of known DNA transformations \mathcal{E} :

 $TCAT \approx T$ GAG \approx AG CTC \approx TC AGTA \approx A TAT \approx CT

has complete presentation \mathcal{R} :

 $GA \rightarrow A$ AGT $\rightarrow AT$ ATA $\rightarrow A$ TCA $\rightarrow TA$ TAT $\rightarrow T$ CT $\rightarrow T$

- ► (milk) TAGCTAGCTAGCT $\stackrel{*}{\underset{\mathcal{E}}{\leftrightarrow}}$ CTGACTGACT (cola gene) TAGCTAGCTAGCT $\frac{1}{\mathcal{R}}$ T $\frac{1}{\mathcal{R}}$ CTGACTGACT
- \blacktriangleright (milk) TAGCTAGCTAGCT $\stackrel{*}{\not\subset\!\!\!\!\!\!\!\!\nearrow}$ CTGCTACTGACT (retrovirus) TAGCTAGCTAGCT $\frac{1}{\mathcal{R}}$ T \neq TGT $\frac{1}{\mathcal{R}}$ CTGCTACTGACT

equational system of known DNA transformations \mathcal{E} :

 $TCAT \approx T$ GAG \approx AG CTC \approx TC AGTA \approx A TAT \approx CT

has complete presentation \mathcal{R} :

 $GA \rightarrow A$ AGT $\rightarrow AT$ ATA $\rightarrow A$ TCA $\rightarrow TA$ TAT $\rightarrow T$ CT $\rightarrow T$

- ► (milk) TAGCTAGCTAGCT $\stackrel{*}{\underset{\mathcal{E}}{\leftrightarrow}}$ CTGACTGACT (cola gene) TAGCTAGCTAGCT $\frac{1}{\mathcal{R}}$ T $\frac{1}{\mathcal{R}}$ CTGACTGACT
- \blacktriangleright (milk) TAGCTAGCTAGCT $\stackrel{*}{\diamondsuit}$ CTGCTACTGACT (retrovirus) TAGCTAGCTAGCT $\frac{1}{\mathcal{R}}$ T \neq TGT $\frac{1}{\mathcal{R}}$ CTGCTACTGACT

[KBCV](http://cl-informatik.uibk.ac.at/software/kbcv/)

Example (Chameleon Puzzle) ,,,,,,,,,,,,,,,,,,,,,,,,,, ******************** ********************

A colony of chameleons consists of 20 red, 18 blue, and 16 green animals. Whenever two of different color meet, both change to the third color. Is it possible that all 54 chameleons become the same color?

Example (Chameleon Puzzle) ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, ********************

A colony of chameleons consists of 20 red, 18 blue, and 16 green animals. Whenever two of different color meet, both change to the third color. Is it possible that all 54 chameleons become the same color?

mædmax produces TRS which is complete (modulo AC):

mædmax produces TRS which is complete (modulo AC):

initial colony: 20 $\rightarrow +18$ $\rightarrow +16$ \rightarrow

mædmax produces TRS which is complete (modulo AC):

A colony of chameleons consists of 20 red, 18 blue, and 16 green animals. Whenever two of different color meet, both change to the third color. Is it possible that all 54 chameleons become the same color?

mædmax produces TRS which is complete (modulo AC):

Klein and Hirokawa, Maximal Completion, 2011.

Procedure (equations only)

0 initialize equations $\mathcal E$ to input equalities $\mathcal E_0$

- **0** initialize equations $\mathcal E$ to input equalities $\mathcal E_0$
- 1 guess terminating rewrite system R from $\mathcal E$

- **0** initialize equations $\mathcal E$ to input equalities $\mathcal E_0$
- 1 guess terminating rewrite system R from $\mathcal E$
- 2 check whether ground complete

- **0** initialize equations $\mathcal E$ to input equalities $\mathcal E_0$
- 1 guess terminating rewrite system R from $\mathcal E$
- 2 check whether ground complete

- **0** initialize equations $\mathcal E$ to input equalities $\mathcal E_0$
- 1 guess terminating rewrite system R from $\mathcal E$
- 2 check whether ground complete
- 3 add some critical pairs $S_{\mathcal{E}} \subset \mathbb{CP}(\mathcal{R} \cup \mathcal{E})$

Procedure (equations only)

- **0** initialize equations $\mathcal E$ to input equalities $\mathcal E_0$
- 1 guess terminating rewrite system R from $\mathcal E$
- 2 check whether ground complete
- 3 add some critical pairs $S_{\mathcal{E}} \subseteq \mathsf{CP}(\mathcal{R} \cup \mathcal{E})$ repeat from $\boxed{1}$

,

Procedure (with inequalities)

- **0** initialize equations and inequalities $(\mathcal{E}, \mathcal{I})$ to input $(\mathcal{E}_0, \{s \not\approx t\})$
- 1 guess terminating rewrite system R from $\mathcal E$
- 2 check whether ground complete or inequality joinable
- add some critical pairs $S_{\mathcal{E}} \subseteq \mathbb{CP}(\mathcal{R} \cup \mathcal{E})$ and $S_{\mathcal{T}} \subseteq \mathbb{CP}(\mathcal{R} \cup \mathcal{E}, \mathcal{I})$, repeat from 1

Remark maximal ordered completion is conflict-driven approach

Critical Aspects

 \triangleright use maxSAT solver to find rewrite system maximizing some goal, e.g. to orient as many equations as possible

Winkler, A Ground Joinability Criterion for Ordered Completion, 2017.

Critical Aspects

- $\,$ use maxSAT solver to find rewrite system maximizing some goal, e.g. to orient as many equations as possible
- checking ground completeness is undecidable: overapproximate

Winkler, A Ground Joinability Criterion for Ordered Completion, 2017.

finding R

Finding Rewrite Systems

▶ use SMT encodings of orders: LPO and KBO, linear polynomials

finding R

Finding Rewrite Systems

- use SMT encodings of orders: LPO and KBO, linear polynomials
- optimization for maxSMT uses weighted combination of (a) maximize R-reducible subset of $\mathcal E$ (b) maximize $|\mathcal R|$ (c) maximize ground-joinable equations in $\mathcal E$ (d) minimize $|CP(\mathcal R)| = 27$

finding R

Success Checks

- rewriting/unifiability for goals
- narrowing for ground complete systems
- ground confluence criteria [MartinNipkow90], [W17] (SAT problem)

Avoiding the Blowup

- compute extended critical pairs wrt order orienting ${\cal R}$
- \blacktriangleright filter out equations known to be ground joinable [AHL03]

Fingerprint Indexing

 \triangleright for matching and unifiability [Schulz12]

Restarts

 \triangleright do restarts keeping small lemmas when state is stuck

<certificationProblem> <input> <orderedCompletionInput> <equations> <rules> ...</rules> </equations> <trs> <rules> <rule> <lhs> <funapp> $<$ name $>$ mult $<$ /name $>$... $<$ arg $>$ <funapp> <name>inv</name> <arg> <var>Y</var> </arg> </funapp> $\langle \rangle$ arg> $\langle \rangle$ funapp> $\langle \rangle$ lhs> \langle rhs> \langle funapp \rangle \langle name \rangle mult \langle /name \rangle <arg> <var>X</var> </arg> <arg> <var>Y</var> </arg> \langle funapp> \langle /rhs> \langle /rule> \langle /trs> $<$ proof> $<$ orderedCompletionProof> </orderedCompletionProof> </proof> </certificationProblem>

Certiable Proofs

- support CPF output for unsatisfiable and satisfiable problems
- 90% of proofs validated by Isabelle-based certifier CeTA [ST15] (not all ground confluence criteria are supported by CeTA yet)

Order Generation Mode

 \triangleright output "best" order found after some iterations

T_CT

- input: term rewrite system $\mathcal R$
- output: derivational complexity dc_{R}

Avanzini, Moser, and Schaper, TcT: Tyrolean Complexity Tool, 2016. 28

T_CT

- input: term rewrite system $\mathcal R$
- output: derivational complexity dc_{R}

Definitions

► derivation height

$$
\mathrm{dh}_{\mathcal{R}}(t) = \max\left\{ n \mid \exists u \colon t \to_{\mathcal{R}}^n u \right\}
$$

T_CT

- input: term rewrite system R
- output: derivational complexity dc_{R}

Definitions

- ► derivation height
- \blacktriangleright derivational complexity

$$
\mathrm{dh}_{\mathcal{R}}(t) = \max\left\{ n \mid \exists u \colon t \to_{\mathcal{R}}^n u \right\}
$$

$$
\frac{\mathrm{d} \mathrm{c}_{\mathcal{R}}(n)}{\mathrm{d} \mathrm{c}_{\mathcal{R}}(n)} = \max\left\{ \mathrm{dh}_{\mathcal{R}}(t) \mid |t| = n \right\}
$$

 T_CT

- input: term rewrite system $\mathcal R$
- output: derivational complexity dc_{R}

Example

 $[$ | \mathbb{Q} xs \rightarrow xs $(x : xs)$ \mathbb{Q} ys \rightarrow x : (xs \mathbb{Q} ys) $\text{flatten}(\Pi) \to \Pi$ flatten $(x : xs) \to x \mathbb{Q}$ flatten (xs)

T_CT

- input: term rewrite system $\mathcal R$
- output: derivational complexity dc_{R}

Example

 $[$ | \mathbb{Q} xs \rightarrow xs $(x : xs) \mathbb{Q}$ ys \rightarrow x : (xs \mathbb{Q} ys) $\text{flatten}(\Pi) \to \Pi$ flatten $(x : xs) \to x \mathbb{Q}$ flatten (xs)

T_CT

- input: term rewrite system R
- output: derivational complexity dc_{R}

Example (Sieve of Eratosthenes)

- \triangleright system is innermost terminating
- \triangleright can analyze innermost complexity

ProTeM

tool to create proof terms from rewrite steps and manipulate them

ProTeM

tool to create proof terms from rewrite steps and manipulate them

Proof Terms

 \blacktriangleright representation of rewrite sequences as terms

ProTeM

tool to create proof terms from rewrite steps and manipulate them

Proof Terms

- representation of rewrite sequences as terms
- \blacktriangleright admit concise analysis of equivalence of rewrite sequences

ProTeM

tool to create proof terms from rewrite steps and manipulate them

Proof Terms

- representation of rewrite sequences as terms
- \triangleright admit concise analysis of equivalence of rewrite sequences

August 28 @ CADE: Presentation by Christina Kohl composition of proof terms and implementation in ProTeM

ProTeM

tool to create proof terms from rewrite steps and manipulate them

Proof Terms

- representation of rewrite sequences as terms
- \triangleright admit concise analysis of equivalence of rewrite sequences

August 28 @ CADE: Presentation by Christina Kohl composition of proof terms and implementation in ProTeM

[Motivating Examples](#page-10-0)

[Term Rewriting](#page-44-0)

[Tools](#page-81-0)

Formalization and Certification

[Conclusion](#page-171-0)

why trust these tools?

The IsaFoR/CeTA Framework

Thiemann and Sternagel, Certification of Termination Proofs Using CeTA, 2009.

Certification of Tool Output: Overview

Data taken from Termination and Confluence Competitions 2019, [AST15], [WM18], [SWZ15].

[Motivating Examples](#page-10-0)

[Term Rewriting](#page-44-0)

[Tools](#page-81-0)

Formalization and Certification

[Conclusion](#page-171-0)
Summary

- \blacktriangleright rewrite tools for different theorem proving tasks
	-
	- \triangleright Knuth-Bendix completion \triangleright complexity analysis
	- Intermination analysis **Interpretent Confluence analysis**
		-

Summary

- \blacktriangleright rewrite tools for different theorem proving tasks
	- Intermination analysis **Interpretent Confluence analysis**
	- \triangleright Knuth-Bendix completion \triangleright complexity analysis
- -

Summary

- \blacktriangleright rewrite tools for different theorem proving tasks
	- \triangleright termination analysis \triangleright confluence analysis
- - \triangleright Knuth-Bendix completion \triangleright complexity analysis
		-
- \triangleright certification framework: Isabelle library IsaFoR and proof checker CeTA

Summary

- rewrite tools for different theorem proving tasks
	- Intermination analysis **Interpretent Confluence analysis**
- - \triangleright Knuth-Bendix completion \triangleright complexity analysis
		-
- \triangleright certification framework: Isabelle library IsaFoR and proof checker CeTA

Tool Features Helpful for Students

-
- ► web interfaces **I** control over many options

Acknowledgements

Aart Middeldorp, Georg Moser, René Thiemann, Harald Zankl, Christian Sternagel, Martin Korp, Friedrich Neurauter, Andreas Schnabl, Martin Avanzini, Michael Schaper, Thomas Sternagel, Julian Nagele, Bertram Felgenhauer, Cynthia Kop, Manuel Schneckenreither, David Obwaller, Sebastiaan Joosten, Akihisa Yamada, Ralph Bottesch, T. V. H. Prathamesh, Franziska Rapp, Maria Schett, Max Haslbeck, Simon Legner, Christina Kohl, Alexander Lochmann, Jonas Schöpf