

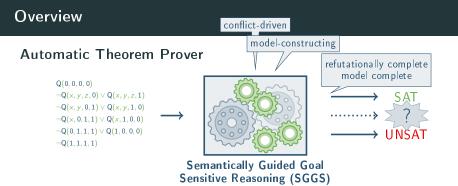




## SGGS Decision Procedures

Maria Paola Bonacina and <u>Sarah Winkler</u> Università degli Studi di Verona

10th International Joint Conference on Automated Reasoning 3 July 2020



#### **Decidable Fragment**

- ▶ subset of first-order formulas for which there exists a decision procedure
- examples: Ackermann, monadic, guarded, EPR, PVD, FO<sup>2</sup>, ...

#### **This Talk**

term rewriting to recognize decidable problems

- ► SGGS as decision procedure: stratified, restrained, and PVD fragments,
- restrained fragment: new decidable class
- SGGS implementation in prover Koala

#### SGGS Decision Procedures (SW)

## SGGS

# Stratified Fragment

**Restrained Fragment** 

#### Experiments

## Conclusion

## SGGS: Ingredients

- ▶ set of input clauses *S* in many-sorted logic
- $\blacktriangleright$  initial interpretation  ${\cal I}$
- Herbrand constraints
- constrained clause A ▷ C is clause C with Herbrand constraint A, one literal selected per clause top(x) ≠ f ▷ ¬P(a) ∨ Q(a,x)
- trail Γ is sequence of constrained clauses
- inference system  $\vdash$  on trails  $\Gamma$ , parameterized by  $\mathcal{I}$

## Model representation: $\mathcal{I}[\Gamma]$

for trail  $\Gamma = A_1 \triangleright C_1[L_1], \ldots, A_n \triangleright C_n[L_n]$  without conflict:

interpretation  $\mathcal{I}[\Gamma]$  satisfies  $\bigcup_i Gr(A_i \triangleright L_i)$  and defaults to  $\mathcal{I}$  otherwise

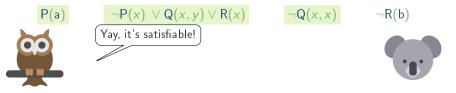
# Theorem (Completeness)(Bonacina & Plaisted 2014,2017)for fair derivation $\Gamma_0 \vdash \Gamma_1 \vdash \Gamma_2 \vdash \dots$ from S with initial interpretation $\mathcal{I}$ $\blacktriangleright$ if S is satisfiable then $\mathcal{I}[\Gamma_\infty] \models S$ $\blacktriangleright$ otherwise $\bot \in \Gamma_k$ for some k

 $\mathcal{I}^{-}(\mathsf{P}) = \cdots = \mathcal{I}^{-}(\mathsf{R}) = \bot$ 

 $\mathcal{I}^+(\mathsf{P}) = \cdots = \mathcal{I}^+(\mathsf{R}) = \top$ 

 $top(x) \neq f \land x \not\equiv y$ 

## Example (SGGS as a Game)



SGGS inference sequence using initial interpretation  $\mathcal{I}^-$  :

$$\begin{array}{c|c} \epsilon \vdash [\mathsf{P}(\mathsf{a})] & \text{extend} \\ \vdash [\mathsf{P}(\mathsf{a})], \ \neg \mathsf{P}(\mathsf{a}) \lor [\mathsf{Q}(\mathsf{a},y)] \lor \mathsf{R}(\mathsf{a}) & \text{extend} \\ \vdash [\mathsf{P}(\mathsf{a})], \ \neg \mathsf{P}(\mathsf{a}) \lor [\mathsf{Q}(\mathsf{a},y)] \lor \mathsf{R}(\mathsf{a}), & [\neg \mathsf{Q}(\mathsf{a},\mathsf{a})] & \text{extend} \\ \vdash [\mathsf{P}(\mathsf{a})], \ \neg \mathsf{P}(\mathsf{a}) \lor [\mathsf{Q}(\mathsf{a},y)] \lor \mathsf{R}(\mathsf{a}), & [\neg \mathsf{Q}(\mathsf{a},\mathsf{a})] \lor \mathsf{R}(\mathsf{a}), \\ & \neg \mathsf{P}(\mathsf{a}) \lor [\mathsf{Q}(\mathsf{a},\mathsf{a})] \lor \mathsf{R}(\mathsf{a}), & [\neg \mathsf{P}(\mathsf{a}) \lor \mathsf{Q}(\mathsf{a},\mathsf{a})] \lor \mathsf{R}(\mathsf{a}), \\ & [\mathsf{P}(\mathsf{a})], \ top(y) \neq \mathsf{a} \rhd \neg \mathsf{P}(\mathsf{a}) \lor [\mathsf{Q}(\mathsf{a},y)] \lor \mathsf{R}(\mathsf{a}), \\ & [\neg \mathsf{Q}(\mathsf{a},\mathsf{a})], \neg \mathsf{P}(\mathsf{a}) \lor [\mathsf{Q}(\mathsf{a},\mathsf{a})] \lor \mathsf{R}(\mathsf{a}), \\ & [\neg \mathsf{Q}(\mathsf{a},\mathsf{a})], \neg \mathsf{P}(\mathsf{a}) \lor [\mathsf{Q}(\mathsf{a},\mathsf{a})] \lor \mathsf{R}(\mathsf{a}), \\ & \vdash [\mathsf{P}(\mathsf{a})], \ top(y) \neq \mathsf{a} \rhd \neg \mathsf{P}(\mathsf{a}) \lor [\mathsf{Q}(\mathsf{a},y)] \lor \mathsf{R}(\mathsf{a}), \ [\neg \mathsf{Q}(\mathsf{a},\mathsf{a})], \neg \mathsf{P}(\mathsf{a}) \lor [\mathsf{R}(\mathsf{a})] \quad \text{resolve} \end{array}$$

## SGGS: Ingredients

- $\blacktriangleright$  set of input clauses S in many-sorted logic
- $\blacktriangleright$  initial interpretation  $\mathcal I$
- Herbrand constraints
- ► constrained clause A ▷ C is clause C with Herbrand constraint A, one literal selected per clause top(x) ≠ f ▷ ¬P(a) ∨ [Q(a, x)]
- trail Γ is sequence of constrained clauses
- inference system  $\vdash$  on trails  $\Gamma$ , parameterized by  $\mathcal I$

## Model representation: $\mathcal{I}[\Gamma]$

for trail  $\Gamma = A_1 \triangleright C_1[L_1], \ldots, A_n \triangleright C_n[L_n]$  without conflict:

interpretation  $\mathcal{I}[\Gamma]$  satisfies  $\bigcup_i Gr(A_i \triangleright L_i)$  and defaults to  $\mathcal{I}$  otherwise

Theorem (Completeness)(Bonacina & Plaisted 2014,2017)for fair derivation  $\Gamma_0 \vdash \Gamma_1 \vdash \Gamma_2 \vdash \dots$  from S with initial interpretation  $\mathcal{I}$  $\blacktriangleright$  if S is satisfiable then  $\mathcal{I}[\Gamma_\infty] \models S$  $\blacktriangleright$  otherwise  $\bot \in \Gamma_k$  for some k

 $\mathcal{I}^{-}(\mathsf{P}) = \cdots = \mathcal{I}^{-}(\mathsf{R}) = \bot$  $\mathcal{I}^{+}(\mathsf{P}) = \cdots = \mathcal{I}^{+}(\mathsf{R}) = \top$ 

 $top(x) \neq f \land x \not\equiv y$ 

# SGGS

# Stratified Fragment

**Restrained Fragment** 

#### Experiments

Conclusion

# SGGS on Finite Bases

## Definition

basis is finite subset  ${\mathcal B}$  of Herbrand base of input clause set S

## Definition

- ▶ trail  $A_1 \triangleright C_1, \ldots, A_n \triangleright C_n$  is in  $\mathcal{B}$  if all atoms in  $Gr(A_i \triangleright C_i)$  are in  $\mathcal{B}$
- SGGS derivation is in  $\mathcal{B}$  if all its trails are

#### Lemma

If fair SGGS derivation  $\Gamma_0 \vdash \Gamma_1 \vdash \ldots \vdash \Gamma_j \vdash \ldots$  is in  $\mathcal{B}$ , then  $|\Gamma_j| \leq |\mathcal{B}|+1 \quad \forall j$ 

#### Theorem

A fair SGGS derivation in a finite basis is finite

## Small model property

 $\ldots$  is obtained if size of  ${\mathcal B}$  can be computed

# SGGS Decides the Stratified Fragment

## Definition

signature  $\mathcal{F}$  is stratified, if  $\exists$  well-founded ordering  $<_s$  on sorts such that all  $f: s_1 \times \cdots \times s_n \rightarrow s$  in  $\mathcal{F}$  satisfy  $s <_s s_i$  for all  $1 \leq i \leq n$ 

## Example

- $\begin{array}{c|c} \mathsf{P}(0,0,0,0) \land (\neg \mathsf{P}(x,y,z,0) \lor \mathsf{P}(x,y,z,1)) \\ 0: s_1 & 1: s_1 & \mathsf{P}: s_1 \times s_1 \times s_1 \times s_1 \end{array} \begin{array}{c} \mathsf{EPR} \\ \checkmark \end{array}$
- $\begin{array}{l} \blacktriangleright \quad (\mathbb{Q}(\mathsf{f}(\mathsf{a}), y) \lor \mathbb{Q}(x, \mathsf{a})) \land \neg \mathbb{Q}(\mathsf{b}, y) \\ \mathsf{f} \colon s_2 \to s_1 \quad \mathsf{a} \colon s_2 \quad \mathsf{b} \colon s_1 \quad \mathbb{Q} \colon s_1 \times s_2 \quad s_1 <_s s_2 \end{array}$
- ►  $R(x) \vee R(f(x))$

# Decidability

(Abadi *et al* 2001)

for clause set S over stratified signature, Herbrand base is finite

#### Theorem

Any fair SGGS derivation from stratified clause set S halts,

▶ is refutation if S unsatisfiable, ▶ constructs model if S satisfiable. X

**Example (MSC015**-*n*: **Exponentially long EPR derivations)** given k + 1 clauses encoding a binary counter:

$$\mathsf{Q}(\overline{\mathsf{0}}_k) \qquad \neg \mathsf{Q}(\overline{\mathsf{x}}_m, \mathsf{0}, \overline{\mathsf{1}}_{k-m-1}) \lor \mathsf{Q}(\overline{\mathsf{x}}_m, \mathsf{1}, \overline{\mathsf{0}}_{k-m-1}) \qquad \neg \mathsf{Q}(\overline{\mathsf{1}}_k)$$

SGGS derivation guided by  $\mathcal{I}^-$  needs more than  $2^k$  steps:

$$\begin{split} & \Gamma_{0} \colon \varepsilon \ \vdash \ \Gamma_{1} \colon [\mathbb{Q}(\overline{\mathbb{0}}_{k})] & \text{extend} \\ & \vdash \ \Gamma_{2} \colon \ldots, \neg \mathbb{Q}(\overline{\mathbb{0}}_{k}) \lor [\mathbb{Q}(\overline{\mathbb{0}}_{k-1}, 1)] & \text{extend} \\ & \vdash \ \Gamma_{3} \colon \ldots, \neg \mathbb{Q}(\overline{\mathbb{0}}_{k-1}, 1) \lor [\mathbb{Q}(\overline{\mathbb{0}}_{k-2}, 1, 0)] & \text{extend} \\ & \cdots & \cdots & \cdots \\ & \vdash \ \Gamma_{2^{k}} \colon \ldots, \neg \mathbb{Q}(\overline{\mathbb{1}}_{k-1}, 0) \lor [\mathbb{Q}(\overline{\mathbb{1}}_{k})] & \text{extend} \\ & \vdash \ \Gamma_{2^{k}+1} \colon \ldots, \neg \mathbb{Q}(\overline{\mathbb{1}}_{k-1}, 0) \lor [\mathbb{Q}(\overline{\mathbb{1}}_{k})], \ [\neg \mathbb{Q}(\overline{\mathbb{1}}_{k})] & \text{extend} \\ & \vdash \ \Gamma_{2^{k}+2} \colon \ldots, [\neg \mathbb{Q}(\overline{\mathbb{1}}_{k})], \ \neg \mathbb{Q}(\overline{\mathbb{1}}_{k-1}, 0) \lor [\mathbb{Q}(\overline{\mathbb{1}}_{k})] & \text{move} \\ & \vdash \ \Gamma_{2^{k}+3} \colon \ldots, [\neg \mathbb{Q}(\overline{\mathbb{1}}_{k})], \ [\neg \mathbb{Q}(\overline{\mathbb{1}}_{k-1}, 0)] & \text{resolve} \\ & \cdots & \cdots \\ & \vdash \ \Gamma_{2^{k+2}+1} \colon \bot, \cdots & \text{resolve} \\ \end{split}$$

- InstGen, SCL also behave exponentially, but resolution admits linear proof
- ▶ InstGen decides the stratified class, resolution does not decide EPR directly

## SGGS

# Stratified Fragment

#### Restrained Fragment

#### Experiments

#### Conclusion

SGGS Decision Procedures (SW)

Definition

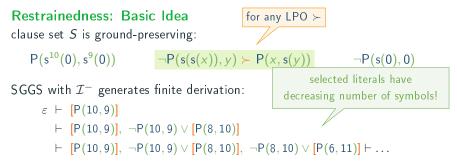
clause C is ground-preserving if every variable in C occurs in negative literal

## Example

- $\blacktriangleright \neg \mathsf{P}(\mathsf{s}(\mathsf{s}(x)), y) \lor \mathsf{P}(x, \mathsf{s}(y))$
- $\neg \mathsf{R}(x,y) \lor \neg \mathsf{R}(y,x) \lor \mathsf{R}(z,z)$

#### Lemma

SGGS with  $\mathcal{I}^-$  generates only ground clauses from ground preserving clause set



#### SGGS Decision Procedures (SW)

X

## Definition (Restraining ordering)

quasi-ordering  $\succeq$  on terms and atoms is restraining if

- ▶ it is stable under substitutions
- strict ordering  $\succ = \succeq \setminus \preceq$  is well-founded
- equivalence  $\succeq \cap \preceq$  has finite classes

## Definition (Restrained clause)

ground-preserving clause C is (strictly) restrained wrt restraining ordering  $\succeq$  if

 $\forall$  non-ground  $L \in C^+ \quad \exists \neg M \in C^-$  such that  $M \succeq L \quad (M \succ L)$ 

and clause set S is restrained with respect to  $\succeq$  if all its clauses are

## Example

► previous slide: strictly restrained wrt LPO  $P(s^{10}(0), s^{9}(0))$   $\neg P(s(s(x)), y) \succ P(x, s(y))$   $\neg P(s(0), 0)$ 

► binary counter problem: strictly restrained wrt  $\bigcup_{k=0}^{\infty} O$  with  $0 \succ 1$  $Q(\overline{0}_k) \qquad \neg Q(\overline{x}_m, 0, \overline{1}_{k-m-1}) \succ Q(\overline{x}_m, 1, \overline{0}_{k-m-1}) \qquad \neg Q(\overline{1}_k)$ 

▶ PLA030-1 contains  $\neg diff(x, y) \succeq diff(y, x)$ : restrained wrt AC-RPO

# SGGS Decides the Restrained Fragment

#### Notation

- $A_S$  is set of ground atoms occurring in S
- ▶  $\mathcal{A}_{S}^{\prec}$  is subset of the Herbrand base upper-bounded by  $\mathcal{A}_{S}$ : finite

$$\mathcal{A}_{S}^{\prec} = \{ L \mid L \in \mathcal{A} \text{ such that } \exists M \in \mathcal{A}_{S} \text{ with } M \succeq L \}$$

#### Key Lemma

Any fair SGGS-derivation from restrained clause set S using  $\mathcal{I}^-$  is in  $\mathcal{A}_S^{\leq}$ .

#### Theorem

any fair SGGS-derivation with  $\mathcal{I}^-$  from restrained clause set S halts,

▶ is refutation if S unsatisfiable, ▶ constructs model if S satisfiable

#### Remarks

- SGGS also decides PVD
- ▶ ... but does not decide (Ackermann, monadic,  $FO^2$ ): does not halt on  $P(0) P(x) \lor P(f(x)) \neg P(x) \lor \neg P(f(x))$

## **Positive Resolution**

- ordered resolution using >
- such that positive literals are >-maximal only in positive clauses

## Key Lemma

if S is restrained, then for all  $C \in R^*_>(S)$  and all  $L \in C^+$  either

(i)  $L \in \mathcal{A}_{S}^{\preceq}$ , or (ii)  $M \succeq L$  for some  $\neg M \in C^{-}$ 

## Theorem

Any fair ordered resolution run using > from restrained set S terminates, and is a refutation if S is unsatisfiable.

## Remark: Flip the Sign

SGGS using  $\mathcal{I}^+$  and negative resolution decide negatively restrained class

SGGS

Stratified Fragment

**Restrained Fragment** 

#### Experiments

Conclusion

SGGS Decision Procedures (SW)

#### **Observation**

restrainedness is an undecidable property

#### Automation: Reduction to Termination of Rewriting

• given clause set S, generate term rewrite system  $\mathcal{R}_S$ :

 $\forall \ C \in S$  with non-ground  $L \in C^+$  have rule in  $\mathcal{R}_S$  such that  $\neg M \in C^-$ :

 $M \rightarrow L$ 

• if  $\mathcal{R}_S$  terminates then S is strictly restrained with respect to  $\rightarrow_{\mathcal{R}_S}^+$ 

#### Example

binary counter for four bits:  $\mathcal{R}_S$  is terminating, e.g. by LPO with 0 > 1

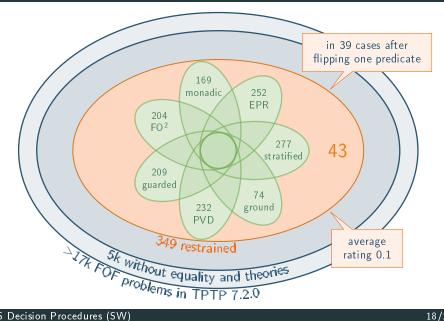
 $\mathsf{P}(x,y,z,0) \rightarrow \mathsf{P}(x,y,z,1) \quad \mathsf{P}(x,y,0,1) \rightarrow \mathsf{P}(x,y,1,0) \quad \mathsf{P}(x,0,1,1) \rightarrow \mathsf{P}(x,1,0,0)$ 

▶ use termination tools for rewrite systems: T<sub>T</sub>T<sub>2</sub> or AProVE

#### Remark

use termination modulo (relative termination) for non-strict restrainedness

## **Recognizing Restrained Sets: Experiments**



## Tool

- implemented in OCaml, re-using some code of iProver: re-using data structures, discrimination trees, type inference
- prototype: (very) little optimization
- $\blacktriangleright$   $\mathcal{I}^+$  or  $\mathcal{I}^-$  as initial interpretation, depending on ground-preservingness
- ▶ performs type inference to compute sorts, take into account for constraints

## Experiments

|                               | Koala<br>sat <mark>unsat</mark> |     | E 2.4     |     | iProver 3.1 |       | Vampire 4.4 |       |
|-------------------------------|---------------------------------|-----|-----------|-----|-------------|-------|-------------|-------|
|                               |                                 |     | sat unsat |     | sat         | unsat | sat         | unsat |
| 1246 stratified               | 277                             | 643 | 145       | 709 | 333         | 891   | 271         | 872   |
| 349 restrained                | 50                              | 283 | 47        | 289 | 51          | 294   | 51          | 298   |
| $351 \text{ PVD}\$ restrained | 76                              | 232 | 44        | 226 | 85          | 252   | 63          | 252   |

TPTP 7.2.0, 300s timeout

http://profs.scienze.univr.it/winkler/sggsdp

# Conclusion

#### Discussion

- ► SGGS attractive as decision procedure: conflict-driven, model-constructing
- ► SGGS decides fragments with finite basis: stratified, restrained, PVD, ....
- restrained fragment: new decidable class (~ 10% of tested TPTP problems)
  —use termination tools to recognize restrainedness
- implementation of SGGS in prototype Koala: reasonable performance on satisfiable problems

## Future Work

- SGGS with equality, extend restrainedness to equality
- use complexity tools for rewriting to automatically estimate model sizes
- ▶ improve Koala, find problem classes where conflict-drivenness is beneficial
- combine SGGS with CDSAT

# Thanks!

