Monitoring Arithmetic Temporal Properties on Finite Traces

Paolo Felli,¹ Marco Montali,² Fabio Patrizi,³ Sarah Winkler²

unibz

¹ University of Bologna, Italy
 ² Free University of Bozen-Bolzano, Italy
 ³ Sapienza University of Rome, Italy

37th AAAI Conference on Artificial Intelligence 10 February 2023, Washington, DC

Checking properties of dynamic systems

- system fully known,
 specification available
- analyze all executions, or all execution trees

analysis task: model checking

- system unknown, or properties inaccessible
- analyze running execution and its possible continuations

analysis task: monitoring

\blacktriangleright can access finite set of numeric **process variables** V

- ► can access finite set of numeric **process variables** V
- ▶ trace is finite sequence of assignments to V

- can access finite set of numeric process variables V
- trace is finite sequence of assignments to V
- ► linear-time property ψ with linear arithmetic constraints (ALTL_f)

- can access finite set of numeric process variables V
- trace is finite sequence of assignments to V
- ► linear-time property ψ with linear arithmetic constraints (ALTL_f)

- ► can access finite set of numeric **process variables** V
- trace is finite sequence of assignments to V
- linear-time property ψ with linear arithmetic constraints (ALTL_f) variables can have lookahead to refer to future values

- ► can access finite set of numeric **process variables** V
- trace is finite sequence of assignments to V
- ► linear-time property ψ with linear arithmetic constraints (ALTL_f) variables can have lookahead to refer to future values

- can access finite set of numeric process variables V
- trace is finite sequence of assignments to V
- ► linear-time property ψ with linear arithmetic constraints variables can have lookahead to refer to future values

 $(ALTL_f)$

- can access finite set of numeric process variables V
- trace is finite sequence of assignments to V
- Inear-time property ψ with linear arithmetic constraints (ALTL_f) variables can have lookahead to refer to future values
- anticipatory monitoring: determine current and future satisfaction

" ψ_1 holds but could get violated in the future"

- ► can access finite set of numeric **process variables** V
- trace is finite sequence of assignments to V
- Inear-time property ψ with linear arithmetic constraints (ALTL_f) variables can have lookahead to refer to future values
- anticipatory monitoring: determine current and future satisfaction

- ► can access finite set of numeric **process variables** V
- trace is finite sequence of assignments to V
- Inear-time property ψ with linear arithmetic constraints (ALTL_f) variables can have lookahead to refer to future values
- anticipatory monitoring: determine current and future satisfaction

- ► can access finite set of numeric **process variables** V
- trace is finite sequence of assignments to V
- linear-time property ψ with linear arithmetic constraints (ALTL_f) variables can have lookahead to refer to future values
- anticipatory monitoring: determine current and future satisfaction
- what is decidable/solvable? how to construct monitors?

given trace and ALTL_f property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

given trace and ALTL_f property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

given trace and ALTL_f property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

given trace and ALTL_f property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

given trace and ALTL_f property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

cs: current satisfaction

given trace and ALTL_f property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

cs: current satisfaction

given trace and ALTL_f property, determine monitoring state [BLS2010]:

permanent satisfaction ps: Х current satisfaction CS: current violation CV permanent violation pv:

given trace and ALTL_f property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

cs: current satisfaction

cv: current violation

pv: permanent violation

A. Bauer, M. Leucker, and C. Schallhart: Comparing LTL Semantics for Runtime Verification. J. Logic and Comput., 20(3): 651-674, 2010.

problem at least as hard as

satisfiability and validity

Х

Theorem

monitoring of lookahead-free properties is solvable

Theorem

monitoring of lookahead-free properties is solvable

Example

• construct DFA for $(y \ge 0) \cup (G(x > y))$, treating constraints as propositions

Theorem

monitoring of lookahead-free properties is solvable

Example

• construct DFA for $(y \ge 0) \cup (G(x > y))$, treating constraints as propositions

Theorem

monitoring of lookahead-free properties is solvable

Example

• construct DFA for $(y \ge 0) \cup (G(x > y))$, treating constraints as propositions

Theorem

monitoring of lookahead-free properties is solvable: DFAs serve as monitors

Example

• construct DFA for $(y \ge 0) \cup (G(x > y))$, treating constraints as propositions

every DFA state *q* corresponds to unique monitoring state

Example (DFAs are not monitors)

• DFAs construction for $G(x' > x) \land F(x = 2)$

Example (DFAs are not monitors)

• DFAs construction for $G(x' > x) \land F(x = 2)$

sequence of monitoring states and DFA states

Fact

Monitoring with lookahead is not solvable: reduction from reachability in 2CM

Monitoring with lookahead is not solvable

problem: state reachability depends on assignment

Example (DFAs are not monitors)

• DFAs construction for $G(x' > x) \land F(x=2)$

sequence of monitoring states and DFA states

Fact

Monitoring with lookahead is not solvable: reduction from reachability in 2CM

given DFA state q reached by trace $\tau,$ find ${\bf condition}$ whether final DFA state is reachable from q after τ

given DFA state q reached by trace τ , find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

history constraints are constraints accumulated along paths in DFA:

$$\begin{split} h(A \to C) &= (x = x_0 \land x \neq 2) \\ h(A \to C \to C) &= \exists x_1. \ (x_1 = x_0 \land x_1 \neq 2) \land (x \ge x_1 \land x \neq 2) \\ h(A \to C \to C \to C) &= \exists x_1 x_2. \ \dots \land (x \ge x_2 \land x \neq 2) \end{split}$$

given DFA state q reached by trace τ , find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

b history constraints are constraints accumulated along paths in DFA:

 $h(A \to C) = (x = x_0 \land x \neq 2)$ $h(A \to C \to C) = \exists x_1. (x_1 = x_0 \land x_1 \neq 2) \land (x \ge x_1 \land x \neq 2)$ $h(A \to C \to C \to C) = \exists x_1 x_2. \dots \land (x \ge x_2 \land x \neq 2)$

given DFA state q reached by trace $\tau,$ find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

history constraints are constraints accumulated along paths in Dros

 $\begin{aligned} h(\mathsf{A} \to \mathsf{C}) &= (x = x_0 \land x \neq 2) \\ h(\mathsf{A} \to \mathsf{C} \to \mathsf{C}) &= \exists x_1. \ (x_1 = x_0 \land x_1 \neq 2) \land (x \geqslant x_1 \land x \neq 2) \\ h(\mathsf{A} \to \mathsf{C} \to \mathsf{C}) &= \exists x_1 x_2. \ \cdots \land (x \geqslant x_2 \land x \neq 2) \\ &\equiv x_0 \neq 2 \land x \geqslant x_0 \\ &\equiv x_0 \neq 2 \land x \geqslant x_0 \end{aligned}$

given DFA state q reached by trace $\tau,$ find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

history constraints are constraints accumulated along paths in DFA:

 $\begin{aligned} h(A \to C) &= (x = x_0 \land x \neq 2) \\ h(A \to C \to C) &= \exists x_1. \ (x_1 = x_0 \land x_1 \neq 2) \land (x \ge x_1 \land x \neq 2) \\ h(A \to C \to C) &= \exists x_1 x_2. \ \dots \land (x \ge x_2 \land x \neq 2) \\ &\equiv x_0 \neq 2 \land x \ge x_0 \end{aligned}$

constraint graph CG(q) represents history constraints for all paths from q

given DFA state q reached by trace $\tau,$ find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

history constraints are constraints accumulated along paths in DFA:

 $\begin{aligned} h(A \to C) &= (x = x_0 \land x \neq 2) \\ h(A \to C \to C) &= \exists x_1. \ (x_1 = x_0 \land x_1 \neq 2) \land (x \ge x_1 \land x \neq 2) \\ h(A \to C \to C) &= \exists x_1 x_2. \ \dots \land (x \ge x_2 \land x \neq 2) \\ &\equiv x_0 \neq 2 \land x \ge x_0 \end{aligned}$

constraint graph CG(q) represents history constraints for all paths from q

given DFA state q reached by trace $\tau,$ find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

history constraints are constraints accumulated along paths in DFA:

 $\begin{aligned} h(A \to C) &= (x = x_0 \land x \neq 2) \\ h(A \to C \to C) &= \exists x_1. \ (x_1 = x_0 \land x_1 \neq 2) \land (x \geqslant x_1 \land x \neq 2) \\ h(A \to C \to C) &= \exists x_1 x_2. \ \dots \land (x \geqslant x_2 \land x \neq 2) \\ &\equiv x_0 \neq 2 \land x \geqslant x_0 \end{aligned}$

constraint graph CG(q) represents history constraints for all paths from q

given DFA state q reached by trace $\tau,$ find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

history constraints are constraints accumulated along paths in DFA:

 $\begin{aligned} h(A \to C) &= (x = x_0 \land x \neq 2) \\ h(A \to C \to C) &= \exists x_1. \ (x_1 = x_0 \land x_1 \neq 2) \land (x \geqslant x_1 \land x \neq 2) \\ h(A \to C \to C) &= \exists x_1 x_2. \ \dots \land (x \geqslant x_2 \land x \neq 2) \\ &\equiv x_0 \neq 2 \land x \geqslant x_0 \end{aligned}$

constraint graph CG(q) represents history constraints for all paths from q

 formulas in final nodes of CG give condition for reachability of final DFA states: captured by FSat(CG(q)) (similarly FUns(CG(q)))

Monitoring procedure

all monitoring structures can be computed upfront (DFA, CGs, FSat, FUns)

- 1: procedure MONITOR(ψ , τ)
- 2: compute DFA for ψ
- 3: $w \leftarrow$ word over constraints consistent with au
- 4: $q \leftarrow \mathsf{DFA}$ state in such that $\{q_0\} \rightarrow^*_w q$
- 5: $\alpha \leftarrow \mathsf{last} \mathsf{ assignment} \mathsf{ in } \tau$
- 6: if q accepting in DFA then
- 7: return (cs if $\alpha \models FUns(CG(q))$ else ps)
- 8: else return (cv if $\alpha \models FSat(CG(q))$ else pv)

Monitoring procedure

all monitoring structures can be computed upfront (DFA, CGs, FSat, FUns)

- 1: procedure MONITOR(ψ , τ)
- 2: compute DFA for ψ
- 3: $w \leftarrow$ word over constraints consistent with au
- 4: $q \leftarrow \mathsf{DFA}$ state in such that $\{q_0\} \rightarrow^*_w q$
- 5: $\alpha \leftarrow \mathsf{last} \mathsf{ assignment} \mathsf{ in } \tau$
- 6: if q accepting in DFA then
- 7: return (cs if $\alpha \models FUns(CG(q))$ else ps)
- 8: else return (cv if $\alpha \models FSat(CG(q))$ else pv)

Theorem (Correctness)

if $\operatorname{MONITOR}(\psi, au) = s$ then s is monitoring state for ψ and au

Monitoring procedure

all monitoring structures can be computed upfront (DFA, CGs, FSat, FUns)

does not terminate if CGs infinite

- 1: procedure MONITOR(ψ , τ)
- 2: compute DFA for ψ
- 3: $w \leftarrow$ word over constraints consistent with au
- 4: $q \leftarrow \mathsf{DFA}$ state in such that $\{q_0\} \rightarrow^*_w q$
- 5: $\alpha \leftarrow \mathsf{last} \mathsf{ assignment} \mathsf{ in } \tau$
- 6: if q accepting in DFA then
- 7: return (cs if $\alpha \models FUns(CG(q))$ else ps)
- 8: else return (cv if $\alpha \models FSat(CG(q))$ else pv)

Theorem (Correctness)

if MONITOR $(\psi, au) = s$ then s is monitoring state for ψ and au

previously used in context of model checking [FMW22]

Definition (Finite summary)

property ψ has finite summary if paths in DFA for ψ are covered by finitely many history constraints

[FMW22] P. Felli, M. Montali, S. Winkler. Linear-time verification of data-aware dynamic systems with arithmetic. AAAI-36(5), 5642-5650, 2022

previously used in context of model checking [FMW22]

Definition (Finite summary)

property ψ has finite summary if paths in DFA for ψ are covered by finitely many history constraints

Observation

for properties with finite summary, constraint graphs are finite

[FMW22] P. Felli, M. Montali, S. Winkler. Linear-time verification of data-aware dynamic systems with arithmetic. AAAI-36(5), 5642-5650, 2022

previously used in context of model checking [FMW22]

Definition (Finite summary)

property ψ has finite summary if paths in DFA for ψ are covered by finitely many history constraints

Observation

for properties with finite summary, constraint graphs are finite

Theorem

monitoring task is solvable for any ψ that has finite summary, and MONITOR is monitoring procedure

[FMW22] P. Felli, M. Montali, S. Winkler. Linear-time verification of data-aware dynamic systems with arithmetic. AAAI-36(5), 5642-5650, 2022

Property classes that enjoy finite summary

▶ monotonicity constraint properties over \mathbb{Q} or \mathbb{Z} $G(x' > x) \land F(x=2)$ (all constraints are variable-to-variable/constant comparisons)

S. Demri and D. D'Souza: An automata-theoretic approach to constraint LTL. Inform. Comput., 205(3): 380-415, 2007.

Property classes that enjoy finite summary

- ► monotonicity constraint properties over \mathbb{Q} or \mathbb{Z} $G(x' > x) \land F(x=2)$ (all constraints are variable-to-variable/constant comparisons)
- ► integer periodicity constraint properties $F(x' > 3) \land G(x \equiv_7 2)$ (variable-to-variable/constant comparisons with modulo operator)

S. Demri: LTL over integer periodicity constraints. Theor. Comput. Sci., 360(1-3): 96-123, 2006.

Property classes that enjoy finite summary

- ► monotonicity constraint properties over \mathbb{Q} or \mathbb{Z} $G(x' > x) \land F(x=2)$ (all constraints are variable-to-variable/constant comparisons)
- ► integer periodicity constraint properties $F(x' > 3) \land G(x \equiv_7 2)$ (variable-to-variable/constant comparisons with modulo operator)
- ► **bounded lookback** properties (restriction on interaction of constraints via lookahead, generalizes feedback freedom)

E. Damaggio, A. Deutsch and V. Vianu: Artifact systems with data dependencies and arithmetic. ACM Trans. Database Syst., 37(3): 22:1–22:36, 2012

Property classes that enjoy finite summary

- $G(x' > x) \land F(x = 2)$ **monotonicity constraint** properties over \mathbb{Q} or \mathbb{Z} (all constraints are variable-to-variable/constant comparisons)
- $F(x' > 3) \land G(x \equiv_7 2)$ **integer periodicity constraint** properties (variable-to-variable/constant comparisons with modulo operator)
- $F(x' > y) \wedge G(x + z = 7)$ **bounded lookback** properties (restriction on interaction of constraints via lookahead, generalizes feedback freedom)

Non-solvable class

gap-order properties (all constraints are gap-order comparisons)

L. Bozzelli and S. Pinchinat: Verification of gap- order constraint abstractions of counter systems. Theor. Comput. Sci., 523: 1-36, 2014

 $G(x' - y \ge 3) \wedge F(x - z' \ge 2)$

Property classes that enjoy finite summary

- ► monotonicity constraint properties over \mathbb{Q} or \mathbb{Z} $G(x' > x) \land F(x=2)$ (all constraints are variable-to-variable/constant comparisons)
- ► integer periodicity constraint properties $F(x' > 3) \land G(x \equiv_7 2)$ (variable-to-variable/constant comparisons with modulo operator)
- ► **bounded lookback** properties $F(x' > y) \land G(x + z = 7)$ (restriction on interaction of constraints via lookahead, generalizes feedback freedom)

L. Bozzelli and S. Pinchinat: Verification of gap- order constraint abstractions of counter systems. Theor. Comput. Sci., 523: 1-36, 2014

1 ALTL_f monitoring with linear arithmetic constraints:

without lookahead:solvable(DFA construction for monitors)with lookahead:not solvable

- ALTL_f monitoring with linear arithmetic constraints: without lookahead: solvable (DFA construction for monitors) with lookahead: not solvable
- 2 general monitoring procedure for lookahead properties: terminates for finite summary properties

- ALTL_f monitoring with linear arithmetic constraints: without lookahead: solvable (DFA construction for monitors) with lookahead: not solvable
- 2 general monitoring procedure for lookahead properties: terminates for finite summary properties
- solvability for several practical classes of formulae: monotonicity and integer periodicity constraints, bounded lookback

- ALTL_f monitoring with linear arithmetic constraints: without lookahead: solvable (DFA construction for monitors) with lookahead: not solvable
- 2 general monitoring procedure for lookahead properties: terminates for finite summary properties
- solvability for several practical classes of formulae: monotonicity and integer periodicity constraints, bounded lookback
- SMT-based prototype ada witnesses feasibility of approach

1 ALTL_f monitoring with linear arithmetic constraints:

	witho	out lookahead:	solvable	(DFA construction for monitors)
	with	lookahead:	not solvable	
2	genei	1	Monitoring Arith	metic Temporal Properties
	term		prototype	tool for AAAI'23 submission
3	solva			main help load example +
	mond	x = 0, y = 0 x = 15 y = 1		
4	SMT	x = 2, y = 2 x = 3, y = 1		
_				
		LTLf property		
		(x' >= x) U (y == 3)		
		Check		
		NFA DFA OUTPUT		
		input system		
		CICC to open q_{0} : (0) (y = 3) q_{2} : (1, 2) (1) (1) (2) (2) (2) (3) (3) (3) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5	x >= x-), (y != 3))	

- ALTL_f monitoring with linear arithmetic constraints: without lookahead: solvable (DFA construction for monitors) with lookahead: not solvable
- 2 general monitoring procedure for lookahead properties: terminates for finite summary properties
- solvability for several practical classes of formulae: monotonicity and integer periodicity constraints, bounded lookback
- 4 SMT-based prototype ada witnesses feasibility of approach

Future work

- lift approach to richer properties equipped with full-fledged relations
- possibly study more general, controlled first-order quantification across time