


Checking properties of dynamic systems

▶ system fully known,

speci�cation available

▶ analyze all executions, or

all execution trees

analysis task:
model checking

▶ system unknown, or properties

inaccessible

▶ analyze running execution and

its possible continuations

analysis task:
monitoring

2/11



Overview

x , y

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y =−4

x = 6
y =−4

�ψ1 holds but could get violated in the future�

�ψ2 does not hold and will never hold in the future�

▶ ψ1 = (y ⩾ 0) U (G(x > y))

�y is nonnegative until
x is always greater than y �

▶ ψ2 = G(x < x ′) ∧ F(x = 2)

�the current value of x is always less than the
next one, and at some point x has value 2�

▶ can access �nite set of numeric process variables V

▶ trace is �nite sequence of assignments to V

▶ linear-time property ψ with linear arithmetic constraints (ALTLf )

variables can have lookahead to refer to future values

▶ anticipatory monitoring: determine current and future satisfaction

▶ what is decidable/solvable? how to construct monitors?

3/11



Overview

x , y
x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y =−4

x = 6
y =−4

�ψ1 holds but could get violated in the future�

�ψ2 does not hold and will never hold in the future�

▶ ψ1 = (y ⩾ 0) U (G(x > y))

�y is nonnegative until
x is always greater than y �

▶ ψ2 = G(x < x ′) ∧ F(x = 2)

�the current value of x is always less than the
next one, and at some point x has value 2�

▶ can access �nite set of numeric process variables V

▶ trace is �nite sequence of assignments to V

▶ linear-time property ψ with linear arithmetic constraints (ALTLf )

variables can have lookahead to refer to future values

▶ anticipatory monitoring: determine current and future satisfaction

▶ what is decidable/solvable? how to construct monitors?

3/11



Overview

x , y
x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y =−4

x = 6
y =−4

�ψ1 holds but could get violated in the future�

�ψ2 does not hold and will never hold in the future�

▶ ψ1 = (y ⩾ 0) U (G(x > y))

�y is nonnegative until
x is always greater than y �

▶ ψ2 = G(x < x ′) ∧ F(x = 2)

�the current value of x is always less than the
next one, and at some point x has value 2�

▶ can access �nite set of numeric process variables V

▶ trace is �nite sequence of assignments to V

▶ linear-time property ψ with linear arithmetic constraints (ALTLf )

variables can have lookahead to refer to future values

▶ anticipatory monitoring: determine current and future satisfaction

▶ what is decidable/solvable? how to construct monitors?

3/11



Overview

x , y
x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y =−4

x = 6
y =−4

�ψ1 holds but could get violated in the future�

�ψ2 does not hold and will never hold in the future�

▶ ψ1 = (y ⩾ 0) U (G(x > y)) �y is nonnegative until
x is always greater than y �

▶ ψ2 = G(x < x ′) ∧ F(x = 2)

�the current value of x is always less than the
next one, and at some point x has value 2�

▶ can access �nite set of numeric process variables V

▶ trace is �nite sequence of assignments to V

▶ linear-time property ψ with linear arithmetic constraints (ALTLf )

variables can have lookahead to refer to future values

▶ anticipatory monitoring: determine current and future satisfaction

▶ what is decidable/solvable? how to construct monitors?

3/11



Overview

x , y
x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y =−4

x = 6
y =−4

�ψ1 holds but could get violated in the future�

�ψ2 does not hold and will never hold in the future�

▶ ψ1 = (y ⩾ 0) U (G(x > y))

�y is nonnegative until
x is always greater than y �

▶ ψ2 = G(x < x ′) ∧ F(x = 2) x ′ is value of x looking one trace instant ahead

�the current value of x is always less than the
next one, and at some point x has value 2�

▶ can access �nite set of numeric process variables V

▶ trace is �nite sequence of assignments to V

▶ linear-time property ψ with linear arithmetic constraints (ALTLf )

variables can have lookahead to refer to future values

▶ anticipatory monitoring: determine current and future satisfaction

▶ what is decidable/solvable? how to construct monitors?

3/11



Overview

x , y
x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y =−4

x = 6
y =−4

�ψ1 holds but could get violated in the future�

�ψ2 does not hold and will never hold in the future�

▶ ψ1 = (y ⩾ 0) U (G(x > y))

�y is nonnegative until
x is always greater than y �

▶ ψ2 = G(x < x ′) ∧ F(x = 2)

�the current value of x is always less than the
next one, and at some point x has value 2�

▶ can access �nite set of numeric process variables V

▶ trace is �nite sequence of assignments to V

▶ linear-time property ψ with linear arithmetic constraints (ALTLf )

variables can have lookahead to refer to future values

▶ anticipatory monitoring: determine current and future satisfaction

▶ what is decidable/solvable? how to construct monitors?

3/11



Overview

x , y
x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y =−4

x = 6
y =−4

�ψ1 holds but could get violated in the future�

�ψ2 does not hold and will never hold in the future�

▶ ψ1 = (y ⩾ 0) U (G(x > y))

�y is nonnegative until
x is always greater than y �

▶ ψ2 = G(x < x ′) ∧ F(x = 2) �the current value of x is always less than the
next one, and at some point x has value 2�

▶ can access �nite set of numeric process variables V

▶ trace is �nite sequence of assignments to V

▶ linear-time property ψ with linear arithmetic constraints (ALTLf )

variables can have lookahead to refer to future values

▶ anticipatory monitoring: determine current and future satisfaction

▶ what is decidable/solvable? how to construct monitors?

3/11



Overview

x , y
x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y =−4

x = 6
y =−4

�ψ1 holds but could get violated in the future�

�ψ2 does not hold and will never hold in the future�

▶ ψ1 = (y ⩾ 0) U (G(x > y))

�y is nonnegative until
x is always greater than y �

▶ ψ2 = G(x < x ′) ∧ F(x = 2)

�the current value of x is always less than the
next one, and at some point x has value 2�

▶ can access �nite set of numeric process variables V

▶ trace is �nite sequence of assignments to V

▶ linear-time property ψ with linear arithmetic constraints (ALTLf )

variables can have lookahead to refer to future values

▶ anticipatory monitoring: determine current and future satisfaction

▶ what is decidable/solvable? how to construct monitors?

3/11



Overview

x , y
x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y =−4

x = 6
y =−4

�ψ1 holds but could get violated in the future�

�ψ2 does not hold and will never hold in the future�

▶ ψ1 = (y ⩾ 0) U (G(x > y))

�y is nonnegative until
x is always greater than y �

▶ ψ2 = G(x < x ′) ∧ F(x = 2)

�the current value of x is always less than the
next one, and at some point x has value 2�

▶ can access �nite set of numeric process variables V

▶ trace is �nite sequence of assignments to V

▶ linear-time property ψ with linear arithmetic constraints (ALTLf )

variables can have lookahead to refer to future values

▶ anticipatory monitoring: determine current and future satisfaction

▶ what is decidable/solvable? how to construct monitors?

3/11



Overview

x , y
x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y =−4

x = 6
y =−4

�ψ1 holds but could get violated in the future�

�ψ2 does not hold and will never hold in the future�

▶ ψ1 = (y ⩾ 0) U (G(x > y))

�y is nonnegative until
x is always greater than y �

▶ ψ2 = G(x < x ′) ∧ F(x = 2)

�the current value of x is always less than the
next one, and at some point x has value 2�

▶ can access �nite set of numeric process variables V

▶ trace is �nite sequence of assignments to V

▶ linear-time property ψ with linear arithmetic constraints (ALTLf )

variables can have lookahead to refer to future values

▶ anticipatory monitoring: determine current and future satisfaction

▶ what is decidable/solvable? how to construct monitors?

3/11



Overview

x , y
x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y =−4

x = 6
y =−4

�ψ1 holds but could get violated in the future�

�ψ2 does not hold and will never hold in the future�

▶ ψ1 = (y ⩾ 0) U (G(x > y))

�y is nonnegative until
x is always greater than y �

▶ ψ2 = G(x < x ′) ∧ F(x = 2)

�the current value of x is always less than the
next one, and at some point x has value 2�

▶ can access �nite set of numeric process variables V

▶ trace is �nite sequence of assignments to V

▶ linear-time property ψ with linear arithmetic constraints (ALTLf )

variables can have lookahead to refer to future values

▶ anticipatory monitoring: determine current and future satisfaction

▶ what is decidable/solvable? how to construct monitors?

3/11



Anticipatory monitoring task

given trace and ALTLf property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

✓

✓
✓

✓

cs: current satisfaction

✗

✓

cv: current violation
✓

✗

pv: permanent violation

✗

✗
✗

✗

problem at least as hard as
satis�ability and validity

consider all �nite continuations
of unbounded length

A. Bauer, M. Leucker, and C. Schallhart: Comparing LTL Semantics for Runtime Veri�cation. J. Logic and

Comput., 20(3): 651�674, 2010.

4/11



Anticipatory monitoring task

given trace and ALTLf property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

✓

✓
✓

✓

cs: current satisfaction

✗

✓

cv: current violation
✓

✗

pv: permanent violation

✗

✗
✗

✗

problem at least as hard as
satis�ability and validity

consider all �nite continuations
of unbounded length

A. Bauer, M. Leucker, and C. Schallhart: Comparing LTL Semantics for Runtime Veri�cation. J. Logic and

Comput., 20(3): 651�674, 2010.

4/11



Anticipatory monitoring task

given trace and ALTLf property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

✓

✓
✓

✓

cs: current satisfaction

✗

✓

cv: current violation
✓

✗

pv: permanent violation

✗

✗
✗

✗

problem at least as hard as
satis�ability and validity

consider all �nite continuations
of unbounded length

A. Bauer, M. Leucker, and C. Schallhart: Comparing LTL Semantics for Runtime Veri�cation. J. Logic and

Comput., 20(3): 651�674, 2010.

4/11



Anticipatory monitoring task

given trace and ALTLf property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

✓

✓
✓

✓

cs: current satisfaction

✗

✓

cv: current violation
✓

✗

pv: permanent violation

✗

✗
✗

✗

problem at least as hard as
satis�ability and validity

consider all �nite continuations
of unbounded length

A. Bauer, M. Leucker, and C. Schallhart: Comparing LTL Semantics for Runtime Veri�cation. J. Logic and

Comput., 20(3): 651�674, 2010.

4/11



Anticipatory monitoring task

given trace and ALTLf property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

✓

✓
✓

✓

cs: current satisfaction

✗

✓

cv: current violation
✓

✗

pv: permanent violation

✗

✗
✗

✗

problem at least as hard as
satis�ability and validity

consider all �nite continuations
of unbounded length

A. Bauer, M. Leucker, and C. Schallhart: Comparing LTL Semantics for Runtime Veri�cation. J. Logic and

Comput., 20(3): 651�674, 2010.

4/11



Anticipatory monitoring task

given trace and ALTLf property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

✓

✓
✓

✓

cs: current satisfaction
✗

✓

cv: current violation
✓

✗

pv: permanent violation

✗

✗
✗

✗

problem at least as hard as
satis�ability and validity

consider all �nite continuations
of unbounded length

A. Bauer, M. Leucker, and C. Schallhart: Comparing LTL Semantics for Runtime Veri�cation. J. Logic and

Comput., 20(3): 651�674, 2010.

4/11



Anticipatory monitoring task

given trace and ALTLf property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

✓

✓
✓

✓

cs: current satisfaction
✗

✓

cv: current violation
✓

✗

pv: permanent violation

✗

✗
✗

✗

problem at least as hard as
satis�ability and validity

consider all �nite continuations
of unbounded length

A. Bauer, M. Leucker, and C. Schallhart: Comparing LTL Semantics for Runtime Veri�cation. J. Logic and

Comput., 20(3): 651�674, 2010.

4/11



Anticipatory monitoring task

given trace and ALTLf property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

✓

✓
✓

✓

cs: current satisfaction
✗

✓

cv: current violation
✓

✗

pv: permanent violation

✗

✗
✗

✗

problem at least as hard as
satis�ability and validity

consider all �nite continuations
of unbounded length

A. Bauer, M. Leucker, and C. Schallhart: Comparing LTL Semantics for Runtime Veri�cation. J. Logic and

Comput., 20(3): 651�674, 2010.

4/11



Monitoring without lookahead

Theorem
monitoring of lookahead-free properties is solvable

: DFAs serve as monitors

Example

▶ construct DFA for (y ⩾ 0) U (G(x > y)) , treating constraints as propositions

1 2

3 4

{y < 0, x > y}

{y ⩾ 0, x > y}
{y < 0, x ⩽ y}

{y ⩾ 0, x ⩽ y}

{y ⩾ 0, x > y}

{y ⩾ 0, x ⩽ y}

{y ⩾ 0, x > y}, {y < 0, x > y}

Θ

{y ⩾ 0, x ⩽ y}
{y < 0, x ⩽ y}

{y < 0, x ⩽ y}

{y < 0, x > y}

▶ every trace pre�x leads to unique DFA state

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y = 4

x = 6
y =−4

cv cv cs cs cs

A A C C B

every DFA state q corresponds to unique monitoring state

if q �nal: cs if non-�nal state reachable from q
ps otherwise

if q not �nal: cv if �nal state reachable from q
pv otherwise

[dGV15] G. De Giacomo and M. Vardi. Synthesis for LTL and LDL on Finite Traces. 24th IJCAI, 2015

5/11



Monitoring without lookahead

Theorem
monitoring of lookahead-free properties is solvable

: DFAs serve as monitors

Example

▶ construct DFA for (y ⩾ 0) U (G(x > y)) , treating constraints as propositions

1 2

3 4

{y < 0, x > y}

{y ⩾ 0, x > y}
{y < 0, x ⩽ y}

{y ⩾ 0, x ⩽ y}

{y ⩾ 0, x > y}

{y ⩾ 0, x ⩽ y}

{y ⩾ 0, x > y}, {y < 0, x > y}

Θ

{y ⩾ 0, x ⩽ y}
{y < 0, x ⩽ y}

{y < 0, x ⩽ y}

{y < 0, x > y}

▶ every trace pre�x leads to unique DFA state

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y = 4

x = 6
y =−4

cv cv cs cs cs

A A C C B

every DFA state q corresponds to unique monitoring state

if q �nal: cs if non-�nal state reachable from q
ps otherwise

if q not �nal: cv if �nal state reachable from q
pv otherwise

[dGV15] G. De Giacomo and M. Vardi. Synthesis for LTL and LDL on Finite Traces. 24th IJCAI, 2015

5/11



Monitoring without lookahead

Theorem
monitoring of lookahead-free properties is solvable

: DFAs serve as monitors

Example

▶ construct DFA for (y ⩾ 0) U (G(x > y)) , treating constraints as propositions

1 2

3 4

{y < 0, x > y}

{y ⩾ 0, x > y}
{y < 0, x ⩽ y}

{y ⩾ 0, x ⩽ y}

{y ⩾ 0, x > y}

{y ⩾ 0, x ⩽ y}

{y ⩾ 0, x > y}, {y < 0, x > y}

Θ

{y ⩾ 0, x ⩽ y}
{y < 0, x ⩽ y}

{y < 0, x ⩽ y}

{y < 0, x > y}

▶ every trace pre�x leads to unique DFA state

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y = 4

x = 6
y =−4

cv cv cs cs cs

A A C C B

every DFA state q corresponds to unique monitoring state

if q �nal: cs if non-�nal state reachable from q
ps otherwise

if q not �nal: cv if �nal state reachable from q
pv otherwise

[dGV15] G. De Giacomo and M. Vardi. Synthesis for LTL and LDL on Finite Traces. 24th IJCAI, 2015

5/11



Monitoring without lookahead

Theorem
monitoring of lookahead-free properties is solvable

: DFAs serve as monitors

Example

▶ construct DFA for (y ⩾ 0) U (G(x > y)) , treating constraints as propositions

1 2

3 4

{y < 0, x > y}

{y ⩾ 0, x > y}
{y < 0, x ⩽ y}

{y ⩾ 0, x ⩽ y}

{y ⩾ 0, x > y}

{y ⩾ 0, x ⩽ y}

{y ⩾ 0, x > y}, {y < 0, x > y}

Θ

{y ⩾ 0, x ⩽ y}
{y < 0, x ⩽ y}

{y < 0, x ⩽ y}

{y < 0, x > y}

▶ every trace pre�x leads to unique DFA state

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y = 4

x = 6
y =−4

cv cv cs cs cs
A A C C B

every DFA state q corresponds to unique monitoring state

if q �nal: cs if non-�nal state reachable from q
ps otherwise

if q not �nal: cv if �nal state reachable from q
pv otherwise

[dGV15] G. De Giacomo and M. Vardi. Synthesis for LTL and LDL on Finite Traces. 24th IJCAI, 2015

5/11



Monitoring without lookahead

Theorem
monitoring of lookahead-free properties is solvable: DFAs serve as monitors

Example

▶ construct DFA for (y ⩾ 0) U (G(x > y)) , treating constraints as propositions

1 2

3 4

{y < 0, x > y}

{y ⩾ 0, x > y}
{y < 0, x ⩽ y}

{y ⩾ 0, x ⩽ y}

{y ⩾ 0, x > y}

{y ⩾ 0, x ⩽ y}

{y ⩾ 0, x > y}, {y < 0, x > y}

Θ

{y ⩾ 0, x ⩽ y}
{y < 0, x ⩽ y}

{y < 0, x ⩽ y}

{y < 0, x > y}

▶ every trace pre�x leads to unique DFA state

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y = 4

x = 6
y =−4

cv cv cs cs cs
A A C C B

every DFA state q corresponds to unique monitoring state

if q �nal: cs if non-�nal state reachable from q
ps otherwise

if q not �nal: cv if �nal state reachable from q
pv otherwise

[dGV15] G. De Giacomo and M. Vardi. Synthesis for LTL and LDL on Finite Traces. 24th IJCAI, 2015

5/11



Monitoring without lookahead

Theorem
monitoring of lookahead-free properties is solvable: DFAs serve as monitors

Example

▶ construct DFA for (y ⩾ 0) U (G(x > y)) , treating constraints as propositions

1 2

3 4

{y < 0, x > y}

{y ⩾ 0, x > y}
{y < 0, x ⩽ y}

{y ⩾ 0, x ⩽ y}

{y ⩾ 0, x > y}

{y ⩾ 0, x ⩽ y}

{y ⩾ 0, x > y}, {y < 0, x > y}

Θ

{y ⩾ 0, x ⩽ y}
{y < 0, x ⩽ y}

{y < 0, x ⩽ y}

{y < 0, x > y}

▶ every trace pre�x leads to unique DFA state

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y = 4

x = 6
y =−4

cv cv cs cs cs
A A C C B

every DFA state q corresponds to unique monitoring state

if q �nal: cs if non-�nal state reachable from q
ps otherwise

if q not �nal: cv if �nal state reachable from q
pv otherwise

[dGV15] G. De Giacomo and M. Vardi. Synthesis for LTL and LDL on Finite Traces. 24th IJCAI, 2015

5/11



Monitoring with lookahead is not solvable

Example (DFAs are not monitors)

▶ DFAs construction for G(x ′> x) ∧ F(x = 2)

A B

C D

{x = 2}

{x ̸= 2}

{x ⩾ x̄ , x=2}
{x ⩾ x̄ , x ̸=2}

{x < x̄ , x=2}
{x < x̄ , x ̸=2}

{x ⩾ x̄ ∧ x ̸= 2}

{x ⩾ x̄ ∧ x = 2}

{x < x̄ , x=2}

{x < x̄ , x ̸=2}
. . .

▶ sequence of monitoring states and DFA states

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y = 4

x = 6
y =−4

cv

C

cv

C

pv

C

pv

C

pv

C

problem: state reachability
depends on assignment

monitoring state and DFA state do not correspond

Fact
Monitoring with lookahead is not solvable: reduction from reachability in 2CM

6/11



Monitoring with lookahead is not solvable

Example (DFAs are not monitors)

▶ DFAs construction for G(x ′> x) ∧ F(x = 2)

A B

C D

{x = 2}

{x ̸= 2}

{x ⩾ x̄ , x=2}
{x ⩾ x̄ , x ̸=2}

{x < x̄ , x=2}
{x < x̄ , x ̸=2}

{x ⩾ x̄ ∧ x ̸= 2}

{x ⩾ x̄ ∧ x = 2}

{x < x̄ , x=2}

{x < x̄ , x ̸=2}
. . .

▶ sequence of monitoring states and DFA states

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y = 4

x = 6
y =−4

cv

C

cv

C

pv

C

pv

C

pv

C

problem: state reachability
depends on assignment

monitoring state and DFA state do not correspond

Fact
Monitoring with lookahead is not solvable: reduction from reachability in 2CM

6/11



Monitoring with lookahead is not solvable

Example (DFAs are not monitors)

▶ DFAs construction for G(x ′> x) ∧ F(x = 2)

A B

C D

{x = 2}

{x ̸= 2}

{x ⩾ x̄ , x=2}
{x ⩾ x̄ , x ̸=2}

{x < x̄ , x=2}
{x < x̄ , x ̸=2}

{x ⩾ x̄ ∧ x ̸= 2}

{x ⩾ x̄ ∧ x = 2}

{x < x̄ , x=2}

{x < x̄ , x ̸=2}
. . .

▶ sequence of monitoring states and DFA states

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y = 4

x = 6
y =−4

cv

C

cv

C

pv

C

pv

C

pv

C

problem: state reachability
depends on assignment

monitoring state and DFA state do not correspond

Fact
Monitoring with lookahead is not solvable: reduction from reachability in 2CM

6/11



Aim
given DFA state q reached by trace τ , �nd condition whether �nal DFA state

is reachable from q after τ

Approach: Symbolic �nite state abstraction

▶ history constraints are constraints accumulated along paths in DFA:

h(A → C) = (x = x0 ∧ x ̸= 2)

h(A → C → C) = ∃x1. (x1 = x0 ∧ x1 ̸= 2) ∧ (x ⩾ x1 ∧ x ̸= 2)

≡ x0 ̸= 2 ∧ x ⩾ x0

h(A → C → C → C) = ∃x1 x2. · · · ∧ (x ⩾ x2 ∧ x ̸= 2)

≡ x0 ̸= 2 ∧ x ⩾ x0

▶ constraint graph CG(q) represents history constraints for all paths from q

C x = x0

C x ⩾ x0 ∧ x ̸= 2 B x0⩽ 2 ∧ x = 2 D x < x0

D ⊤D x0⩽ 2B x0⩽ 2 ∧ x ⩾ 2

{x⩾x̄ ∧ x ̸=2}
{x⩾x̄

∧ x=2}

{x<x̄}

{x<x̄}

{x⩾x̄}{x<x̄}
{x⩾x̄}{x⩾x̄}

{x<x̄}

{x⩾x̄ ∧ x ̸=2}

{x⩾x̄ ∧ x=2}

Σ̂

▶ formulas in �nal nodes of CG give condition for reachability of �nal DFA

states: captured by FSat(CG(q)) (similarly FUns(CG(q)) )

by quanti�er elimination

can be in�nite

if �nite, have faithful �nite state abstraction

7/11



Aim
given DFA state q reached by trace τ , �nd condition whether �nal DFA state

is reachable from q after τ

Approach: Symbolic �nite state abstraction

▶ history constraints are constraints accumulated along paths in DFA:

h(A → C) = (x = x0 ∧ x ̸= 2)

h(A → C → C) = ∃x1. (x1 = x0 ∧ x1 ̸= 2) ∧ (x ⩾ x1 ∧ x ̸= 2)

≡ x0 ̸= 2 ∧ x ⩾ x0

h(A → C → C → C) = ∃x1 x2. · · · ∧ (x ⩾ x2 ∧ x ̸= 2)

≡ x0 ̸= 2 ∧ x ⩾ x0

▶ constraint graph CG(q) represents history constraints for all paths from q

C x = x0

C x ⩾ x0 ∧ x ̸= 2 B x0⩽ 2 ∧ x = 2 D x < x0

D ⊤D x0⩽ 2B x0⩽ 2 ∧ x ⩾ 2

{x⩾x̄ ∧ x ̸=2}
{x⩾x̄

∧ x=2}

{x<x̄}

{x<x̄}

{x⩾x̄}{x<x̄}
{x⩾x̄}{x⩾x̄}

{x<x̄}

{x⩾x̄ ∧ x ̸=2}

{x⩾x̄ ∧ x=2}

Σ̂

▶ formulas in �nal nodes of CG give condition for reachability of �nal DFA

states: captured by FSat(CG(q)) (similarly FUns(CG(q)) )

by quanti�er elimination

can be in�nite

if �nite, have faithful �nite state abstraction

7/11



Aim
given DFA state q reached by trace τ , �nd condition whether �nal DFA state

is reachable from q after τ

Approach: Symbolic �nite state abstraction

▶ history constraints are constraints accumulated along paths in DFA:

h(A → C) = (x = x0 ∧ x ̸= 2)

h(A → C → C) = ∃x1. (x1 = x0 ∧ x1 ̸= 2) ∧ (x ⩾ x1 ∧ x ̸= 2)

≡ x0 ̸= 2 ∧ x ⩾ x0

h(A → C → C → C) = ∃x1 x2. · · · ∧ (x ⩾ x2 ∧ x ̸= 2)

≡ x0 ̸= 2 ∧ x ⩾ x0

▶ constraint graph CG(q) represents history constraints for all paths from q

C x = x0

C x ⩾ x0 ∧ x ̸= 2 B x0⩽ 2 ∧ x = 2 D x < x0

D ⊤D x0⩽ 2B x0⩽ 2 ∧ x ⩾ 2

{x⩾x̄ ∧ x ̸=2}
{x⩾x̄

∧ x=2}

{x<x̄}

{x<x̄}

{x⩾x̄}{x<x̄}
{x⩾x̄}{x⩾x̄}

{x<x̄}

{x⩾x̄ ∧ x ̸=2}

{x⩾x̄ ∧ x=2}

Σ̂

▶ formulas in �nal nodes of CG give condition for reachability of �nal DFA

states: captured by FSat(CG(q)) (similarly FUns(CG(q)) )

by quanti�er elimination

can be in�nite

if �nite, have faithful �nite state abstraction

7/11



Aim
given DFA state q reached by trace τ , �nd condition whether �nal DFA state

is reachable from q after τ

Approach: Symbolic �nite state abstraction

▶ history constraints are constraints accumulated along paths in DFA:

h(A → C) = (x = x0 ∧ x ̸= 2)

h(A → C → C) = ∃x1. (x1 = x0 ∧ x1 ̸= 2) ∧ (x ⩾ x1 ∧ x ̸= 2) ≡ x0 ̸= 2 ∧ x ⩾ x0

h(A → C → C → C) = ∃x1 x2. · · · ∧ (x ⩾ x2 ∧ x ̸= 2) ≡ x0 ̸= 2 ∧ x ⩾ x0

▶ constraint graph CG(q) represents history constraints for all paths from q

C x = x0

C x ⩾ x0 ∧ x ̸= 2 B x0⩽ 2 ∧ x = 2 D x < x0

D ⊤D x0⩽ 2B x0⩽ 2 ∧ x ⩾ 2

{x⩾x̄ ∧ x ̸=2}
{x⩾x̄

∧ x=2}

{x<x̄}

{x<x̄}

{x⩾x̄}{x<x̄}
{x⩾x̄}{x⩾x̄}

{x<x̄}

{x⩾x̄ ∧ x ̸=2}

{x⩾x̄ ∧ x=2}

Σ̂

▶ formulas in �nal nodes of CG give condition for reachability of �nal DFA

states: captured by FSat(CG(q)) (similarly FUns(CG(q)) )

by quanti�er elimination

can be in�nite

if �nite, have faithful �nite state abstraction

7/11



Aim
given DFA state q reached by trace τ , �nd condition whether �nal DFA state

is reachable from q after τ

Approach: Symbolic �nite state abstraction

▶ history constraints are constraints accumulated along paths in DFA:

h(A → C) = (x = x0 ∧ x ̸= 2)

h(A → C → C) = ∃x1. (x1 = x0 ∧ x1 ̸= 2) ∧ (x ⩾ x1 ∧ x ̸= 2) ≡ x0 ̸= 2 ∧ x ⩾ x0

h(A → C → C → C) = ∃x1 x2. · · · ∧ (x ⩾ x2 ∧ x ̸= 2) ≡ x0 ̸= 2 ∧ x ⩾ x0

▶ constraint graph CG(q) represents history constraints for all paths from q

C x = x0

C x ⩾ x0 ∧ x ̸= 2 B x0⩽ 2 ∧ x = 2 D x < x0

D ⊤D x0⩽ 2B x0⩽ 2 ∧ x ⩾ 2

{x⩾x̄ ∧ x ̸=2}
{x⩾x̄

∧ x=2}

{x<x̄}

{x<x̄}

{x⩾x̄}{x<x̄}
{x⩾x̄}{x⩾x̄}

{x<x̄}

{x⩾x̄ ∧ x ̸=2}

{x⩾x̄ ∧ x=2}

Σ̂

▶ formulas in �nal nodes of CG give condition for reachability of �nal DFA

states: captured by FSat(CG(q)) (similarly FUns(CG(q)) )

by quanti�er elimination

can be in�nite

if �nite, have faithful �nite state abstraction

7/11



Aim
given DFA state q reached by trace τ , �nd condition whether �nal DFA state

is reachable from q after τ

Approach: Symbolic �nite state abstraction

▶ history constraints are constraints accumulated along paths in DFA:

h(A → C) = (x = x0 ∧ x ̸= 2)

h(A → C → C) = ∃x1. (x1 = x0 ∧ x1 ̸= 2) ∧ (x ⩾ x1 ∧ x ̸= 2) ≡ x0 ̸= 2 ∧ x ⩾ x0

h(A → C → C → C) = ∃x1 x2. · · · ∧ (x ⩾ x2 ∧ x ̸= 2) ≡ x0 ̸= 2 ∧ x ⩾ x0

▶ constraint graph CG(q) represents history constraints for all paths from q

C x = x0

C x ⩾ x0 ∧ x ̸= 2 B x0⩽ 2 ∧ x = 2 D x < x0

D ⊤D x0⩽ 2B x0⩽ 2 ∧ x ⩾ 2

{x⩾x̄ ∧ x ̸=2}
{x⩾x̄

∧ x=2}

{x<x̄}

{x<x̄}

{x⩾x̄}{x<x̄}
{x⩾x̄}{x⩾x̄}

{x<x̄}

{x⩾x̄ ∧ x ̸=2}

{x⩾x̄ ∧ x=2}

Σ̂

▶ formulas in �nal nodes of CG give condition for reachability of �nal DFA

states: captured by FSat(CG(q)) (similarly FUns(CG(q)) )

by quanti�er elimination

can be in�nite

if �nite, have faithful �nite state abstraction

7/11



Aim
given DFA state q reached by trace τ , �nd condition whether �nal DFA state

is reachable from q after τ

Approach: Symbolic �nite state abstraction

▶ history constraints are constraints accumulated along paths in DFA:

h(A → C) = (x = x0 ∧ x ̸= 2)

h(A → C → C) = ∃x1. (x1 = x0 ∧ x1 ̸= 2) ∧ (x ⩾ x1 ∧ x ̸= 2) ≡ x0 ̸= 2 ∧ x ⩾ x0

h(A → C → C → C) = ∃x1 x2. · · · ∧ (x ⩾ x2 ∧ x ̸= 2) ≡ x0 ̸= 2 ∧ x ⩾ x0

▶ constraint graph CG(q) represents history constraints for all paths from q

C x = x0

C x ⩾ x0 ∧ x ̸= 2 B x0⩽ 2 ∧ x = 2 D x < x0

D ⊤D x0⩽ 2B x0⩽ 2 ∧ x ⩾ 2

{x⩾x̄ ∧ x ̸=2}
{x⩾x̄

∧ x=2}

{x<x̄}

{x<x̄}

{x⩾x̄}{x<x̄}
{x⩾x̄}{x⩾x̄}

{x<x̄}

{x⩾x̄ ∧ x ̸=2}

{x⩾x̄ ∧ x=2}

Σ̂

▶ formulas in �nal nodes of CG give condition for reachability of �nal DFA

states: captured by FSat(CG(q)) (similarly FUns(CG(q)) )

by quanti�er elimination

can be in�nite

if �nite, have faithful �nite state abstraction

7/11



Aim
given DFA state q reached by trace τ , �nd condition whether �nal DFA state

is reachable from q after τ

Approach: Symbolic �nite state abstraction

▶ history constraints are constraints accumulated along paths in DFA:

h(A → C) = (x = x0 ∧ x ̸= 2)

h(A → C → C) = ∃x1. (x1 = x0 ∧ x1 ̸= 2) ∧ (x ⩾ x1 ∧ x ̸= 2) ≡ x0 ̸= 2 ∧ x ⩾ x0

h(A → C → C → C) = ∃x1 x2. · · · ∧ (x ⩾ x2 ∧ x ̸= 2) ≡ x0 ̸= 2 ∧ x ⩾ x0

▶ constraint graph CG(q) represents history constraints for all paths from q

C x = x0

C x ⩾ x0 ∧ x ̸= 2 B x0⩽ 2 ∧ x = 2 D x < x0

D ⊤D x0⩽ 2B x0⩽ 2 ∧ x ⩾ 2

{x⩾x̄ ∧ x ̸=2}
{x⩾x̄

∧ x=2}

{x<x̄}

{x<x̄}

{x⩾x̄}{x<x̄}
{x⩾x̄}{x⩾x̄}

{x<x̄}

{x⩾x̄ ∧ x ̸=2}

{x⩾x̄ ∧ x=2}

Σ̂

▶ formulas in �nal nodes of CG give condition for reachability of �nal DFA

states: captured by FSat(CG(q)) (similarly FUns(CG(q)) )

by quanti�er elimination

can be in�nite

if �nite, have faithful �nite state abstraction

7/11



Monitoring procedure

1: procedure monitor(ψ, τ)

2: compute DFA for ψ

3: w ← word over constraints consistent with τ

4: q ← DFA state in such that {q0} →∗
w q

5: α← last assignment in τ

6: if q accepting in DFA then

7: return (cs if α |= FUns(CG(q)) else ps)

8: else return (cv if α |= FSat(CG(q)) else pv)

all monitoring structures can be computed upfront

(DFA, CGs, FSat, FUns)

Theorem (Correctness)
if monitor(ψ, τ) = s then s is monitoring state for ψ and τ

does not terminate if CGs in�nite

8/11



Monitoring procedure

1: procedure monitor(ψ, τ)

2: compute DFA for ψ

3: w ← word over constraints consistent with τ

4: q ← DFA state in such that {q0} →∗
w q

5: α← last assignment in τ

6: if q accepting in DFA then

7: return (cs if α |= FUns(CG(q)) else ps)

8: else return (cv if α |= FSat(CG(q)) else pv)

all monitoring structures can be computed upfront

(DFA, CGs, FSat, FUns)

Theorem (Correctness)
if monitor(ψ, τ) = s then s is monitoring state for ψ and τ

does not terminate if CGs in�nite

8/11



Monitoring procedure

1: procedure monitor(ψ, τ)

2: compute DFA for ψ

3: w ← word over constraints consistent with τ

4: q ← DFA state in such that {q0} →∗
w q

5: α← last assignment in τ

6: if q accepting in DFA then

7: return (cs if α |= FUns(CG(q)) else ps)

8: else return (cv if α |= FSat(CG(q)) else pv)

all monitoring structures can be computed upfront

(DFA, CGs, FSat, FUns)

Theorem (Correctness)
if monitor(ψ, τ) = s then s is monitoring state for ψ and τ

does not terminate if CGs in�nite

8/11



Abstract solvability criterion

De�nition (Finite summary)
property ψ has �nite summary if paths in DFA for ψ

are covered by �nitely many history constraints

previously used in context of model checking [FMW22]

Observation
for properties with �nite summary, constraint graphs are �nite

Theorem
monitoring task is solvable for any ψ that has �nite summary,

and monitor is monitoring procedure

[FMW22] P. Felli, M. Montali, S. Winkler. Linear-time veri�cation of data-aware dynamic systems with

arithmetic. AAAI-36(5), 5642-5650, 2022

9/11



Abstract solvability criterion

De�nition (Finite summary)
property ψ has �nite summary if paths in DFA for ψ

are covered by �nitely many history constraints

previously used in context of model checking [FMW22]

Observation
for properties with �nite summary, constraint graphs are �nite

Theorem
monitoring task is solvable for any ψ that has �nite summary,

and monitor is monitoring procedure

[FMW22] P. Felli, M. Montali, S. Winkler. Linear-time veri�cation of data-aware dynamic systems with

arithmetic. AAAI-36(5), 5642-5650, 2022

9/11



Abstract solvability criterion

De�nition (Finite summary)
property ψ has �nite summary if paths in DFA for ψ

are covered by �nitely many history constraints

previously used in context of model checking [FMW22]

Observation
for properties with �nite summary, constraint graphs are �nite

Theorem
monitoring task is solvable for any ψ that has �nite summary,

and monitor is monitoring procedure

[FMW22] P. Felli, M. Montali, S. Winkler. Linear-time veri�cation of data-aware dynamic systems with

arithmetic. AAAI-36(5), 5642-5650, 2022

9/11



Concrete solvable property classes

Property classes that enjoy �nite summary

▶ monotonicity constraint properties over Q or Z G(x ′> x) ∧ F(x = 2)

(all constraints are variable-to-variable/constant comparisons)

▶ integer periodicity constraint properties F(x ′> 3) ∧ G(x ≡7 2)

(variable-to-variable/constant comparisons with modulo operator)

▶ bounded lookback properties F(x ′> y) ∧ G(x + z = 7)

(restriction on interaction of constraints via lookahead, generalizes feedback

freedom)

Non-solvable class

▶ gap-order properties G(x ′ − y ⩾ 3) ∧ F(x − z ′ ⩾ 2)

(all constraints are gap-order comparisons)

model checking is decidable

S. Demri and D. D'Souza: An automata-theoretic approach to constraint LTL. Inform. Comput., 205(3):

380-415, 2007.

10/11



Concrete solvable property classes

Property classes that enjoy �nite summary

▶ monotonicity constraint properties over Q or Z G(x ′> x) ∧ F(x = 2)

(all constraints are variable-to-variable/constant comparisons)

▶ integer periodicity constraint properties F(x ′> 3) ∧ G(x ≡7 2)

(variable-to-variable/constant comparisons with modulo operator)

▶ bounded lookback properties F(x ′> y) ∧ G(x + z = 7)

(restriction on interaction of constraints via lookahead, generalizes feedback

freedom)

Non-solvable class

▶ gap-order properties G(x ′ − y ⩾ 3) ∧ F(x − z ′ ⩾ 2)

(all constraints are gap-order comparisons)

model checking is decidable

S. Demri: LTL over integer periodicity constraints. Theor. Comput. Sci., 360(1-3): 96�123, 2006.

10/11



Concrete solvable property classes

Property classes that enjoy �nite summary

▶ monotonicity constraint properties over Q or Z G(x ′> x) ∧ F(x = 2)

(all constraints are variable-to-variable/constant comparisons)

▶ integer periodicity constraint properties F(x ′> 3) ∧ G(x ≡7 2)

(variable-to-variable/constant comparisons with modulo operator)

▶ bounded lookback properties F(x ′> y) ∧ G(x + z = 7)

(restriction on interaction of constraints via lookahead, generalizes feedback

freedom)

Non-solvable class

▶ gap-order properties G(x ′ − y ⩾ 3) ∧ F(x − z ′ ⩾ 2)

(all constraints are gap-order comparisons)

model checking is decidable

E. Damaggio, A. Deutsch and V. Vianu: Artifact systems with data dependencies and arithmetic. ACM Trans.

Database Syst., 37(3): 22:1�22:36, 2012

10/11



Concrete solvable property classes

Property classes that enjoy �nite summary

▶ monotonicity constraint properties over Q or Z G(x ′> x) ∧ F(x = 2)

(all constraints are variable-to-variable/constant comparisons)

▶ integer periodicity constraint properties F(x ′> 3) ∧ G(x ≡7 2)

(variable-to-variable/constant comparisons with modulo operator)

▶ bounded lookback properties F(x ′> y) ∧ G(x + z = 7)

(restriction on interaction of constraints via lookahead, generalizes feedback

freedom)

Non-solvable class

▶ gap-order properties G(x ′ − y ⩾ 3) ∧ F(x − z ′ ⩾ 2)

(all constraints are gap-order comparisons)

model checking is decidable

L. Bozzelli and S. Pinchinat: Veri�cation of gap- order constraint abstractions of counter systems. Theor.

Comput. Sci., 523: 1�36, 2014

10/11



Concrete solvable property classes

Property classes that enjoy �nite summary

▶ monotonicity constraint properties over Q or Z G(x ′> x) ∧ F(x = 2)

(all constraints are variable-to-variable/constant comparisons)

▶ integer periodicity constraint properties F(x ′> 3) ∧ G(x ≡7 2)

(variable-to-variable/constant comparisons with modulo operator)

▶ bounded lookback properties F(x ′> y) ∧ G(x + z = 7)

(restriction on interaction of constraints via lookahead, generalizes feedback

freedom)

Non-solvable class

▶ gap-order properties G(x ′ − y ⩾ 3) ∧ F(x − z ′ ⩾ 2)

(all constraints are gap-order comparisons)

model checking is decidable

L. Bozzelli and S. Pinchinat: Veri�cation of gap- order constraint abstractions of counter systems. Theor.

Comput. Sci., 523: 1�36, 2014

10/11



Summary

1 ALTLf monitoring with linear arithmetic constraints:

without lookahead: solvable (DFA construction for monitors)

with lookahead: not solvable

2 general monitoring procedure for lookahead properties:

terminates for �nite summary properties

3 solvability for several practical classes of formulae:

monotonicity and integer periodicity constraints, bounded lookback

4 SMT-based prototype ada witnesses feasibility of approach

Future work

▶ lift approach to richer properties equipped with full-�edged relations

▶ possibly study more general, controlled �rst-order quanti�cation across time

11/11



Summary

1 ALTLf monitoring with linear arithmetic constraints:

without lookahead: solvable (DFA construction for monitors)

with lookahead: not solvable

2 general monitoring procedure for lookahead properties:

terminates for �nite summary properties

3 solvability for several practical classes of formulae:

monotonicity and integer periodicity constraints, bounded lookback

4 SMT-based prototype ada witnesses feasibility of approach

Future work

▶ lift approach to richer properties equipped with full-�edged relations

▶ possibly study more general, controlled �rst-order quanti�cation across time

11/11



Summary

1 ALTLf monitoring with linear arithmetic constraints:

without lookahead: solvable (DFA construction for monitors)

with lookahead: not solvable

2 general monitoring procedure for lookahead properties:

terminates for �nite summary properties

3 solvability for several practical classes of formulae:

monotonicity and integer periodicity constraints, bounded lookback

4 SMT-based prototype ada witnesses feasibility of approach

Future work

▶ lift approach to richer properties equipped with full-�edged relations

▶ possibly study more general, controlled �rst-order quanti�cation across time

11/11



Summary

1 ALTLf monitoring with linear arithmetic constraints:

without lookahead: solvable (DFA construction for monitors)

with lookahead: not solvable

2 general monitoring procedure for lookahead properties:

terminates for �nite summary properties

3 solvability for several practical classes of formulae:

monotonicity and integer periodicity constraints, bounded lookback

4 SMT-based prototype ada witnesses feasibility of approach

Future work

▶ lift approach to richer properties equipped with full-�edged relations

▶ possibly study more general, controlled �rst-order quanti�cation across time

11/11



Summary

1 ALTLf monitoring with linear arithmetic constraints:

without lookahead: solvable (DFA construction for monitors)

with lookahead: not solvable

2 general monitoring procedure for lookahead properties:

terminates for �nite summary properties

3 solvability for several practical classes of formulae:

monotonicity and integer periodicity constraints, bounded lookback

4 SMT-based prototype ada witnesses feasibility of approach

Future work

▶ lift approach to richer properties equipped with full-�edged relations

▶ possibly study more general, controlled �rst-order quanti�cation across time

11/11



Summary

1 ALTLf monitoring with linear arithmetic constraints:

without lookahead: solvable (DFA construction for monitors)

with lookahead: not solvable

2 general monitoring procedure for lookahead properties:

terminates for �nite summary properties

3 solvability for several practical classes of formulae:

monotonicity and integer periodicity constraints, bounded lookback

4 SMT-based prototype ada witnesses feasibility of approach

Future work

▶ lift approach to richer properties equipped with full-�edged relations

▶ possibly study more general, controlled �rst-order quanti�cation across time

11/11


