Monitoring Arithmetic Temporal Properties on Finite Traces

Paolo Felli,¹ Marco Montali,² Fabio Patrizi,³ Sarah Winkler²

unibz

¹ University of Bologna, Italy ² Free University of Bozen-Bolzano, Italy ³ Sapienza University of Rome, Italy

37th AAAI Conference on Artificial Intelligence 10 February 2023, Washington, DC

Checking properties of dynamic systems

- system fully known, specification available
- analyze all executions, or all execution trees

analysis task: model checking

- system *unknown*, or properties inaccessible
- analyze running execution and its possible continuations

analysis task: monitoring

\triangleright can access finite set of numeric process variables V

- \triangleright can access finite set of numeric process variables V
- \triangleright trace is finite sequence of assignments to V

- can access finite set of numeric process variables V
- **trace** is finite sequence of assignments to V
- \triangleright linear-time property ψ with linear arithmetic constraints (ALTL_f)

- can access finite set of numeric process variables V
- **trace** is finite sequence of assignments to V
- **linear-time property** ψ with linear **arithmetic constraints** (ALTL_f)

- can access finite set of numeric process variables V
- **trace** is finite sequence of assignments to V
- **linear-time property** ψ with linear arithmetic constraints (ALTL_f) variables can have lookahead to refer to future values

x,y
\nx = 0
\ny = 0
\ny = 3
\ny = 4
\ny = -4
\ny = -4
\n
$$
\frac{x = 6}{y = -4}
$$
\n
$$
\frac{y}{y} = -4
$$
\n
$$
\frac{y}{y} = -4
$$
\n
$$
\frac{y}{y} = -4
$$

- can access finite set of numeric process variables V
- \triangleright trace is finite sequence of assignments to V
- **linear-time property** ψ with linear arithmetic constraints (ALTL_f) variables can have lookahead to refer to future values

- can access finite set of numeric process variables V
- **trace** is finite sequence of assignments to V
- linear-time property ψ with linear arithmetic constraints variables can have lookahead to refer to future values

$$
(\mathsf{ALTL}_f)
$$

- can access finite set of numeric process variables V
- **trace** is finite sequence of assignments to V
- **linear-time property** ψ with linear arithmetic constraints (ALTL_f) variables can have lookahead to refer to future values
- ▶ anticipatory monitoring: determine current and future satisfaction

" ψ_1 holds but could get violated in the future"

- can access finite set of numeric process variables V
- **trace** is finite sequence of assignments to V
- **linear-time property** ψ with linear arithmetic constraints (ALTL_f) variables can have lookahead to refer to future values
- ▶ anticipatory monitoring: determine current and future satisfaction

- can access finite set of numeric process variables V
- **trace** is finite sequence of assignments to V
- **linear-time property** ψ with linear arithmetic constraints (ALTL_f) variables can have lookahead to refer to future values
- anticipatory monitoring: determine current and future satisfaction

- can access finite set of numeric process variables V
- **trace** is finite sequence of assignments to V
- **linear-time property** ψ with linear arithmetic constraints (ALTL_f) variables can have lookahead to refer to future values
- anticipatory monitoring: determine current and future satisfaction
- what is decidable/solvable? how to construct monitors?

given trace and $ALTL_f$ property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

given trace and $ALTL_f$ property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

given trace and $ALTL_f$ property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

given trace and $ALTL_f$ property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

given trace and $ALTL_f$ property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

cs: current satisfaction

given trace and $ALTL_f$ property, determine monitoring state [BLS2010]:

ps: permanent satisfaction

cs: current satisfaction

given trace and $ALTL_f$ property, determine monitoring state [BLS2010]:

ps: permanent satisfaction ✓ ✓ ✓ ✓ cs: current satisfaction ✗ ✓ cv: current violation ✓ ✗ pv: permanent violation ✗ ✗ ✗ ✗

given trace and $ALTL_f$ property, determine monitoring state [BLS2010]:

ps: permanent satisfaction problem at least as hard as ✓ roblem at least as hard a
satisfiability and validity ✓ cs: current satisfaction ✗ ✓ cv: current violation ✓ ✗ pv: permanent violation ✗ ✗ ✗ ✗

Theorem

monitoring of lookahead-free properties is solvable

Theorem

monitoring of lookahead-free properties is solvable

Example

▶ construct DFA for $(y \ge 0)$ U $(G(x > y))$, treating constraints as propositions

Theorem

monitoring of lookahead-free properties is solvable

Example

construct DFA for $(y \ge 0)$ U $(G(x > y))$, treating constraints as propositions

$x = 0$	$x = 1$	$x = 4$	$x = 5$	$x = 6$
$y = 0$	$y = 3$	$y = 3$	$y = 4$	$y = -4$
A	A	C	C	B

Theorem

monitoring of lookahead-free properties is solvable

Example

construct DFA for $(y \ge 0)$ U $(G(x > y))$, treating constraints as propositions

Theorem

monitoring of lookahead-free properties is solvable: DFAs serve as monitors

Example

construct DFA for $(y \ge 0)$ U $(G(x > y))$, treating constraints as propositions

every DFA state q corresponds to unique monitoring state

Example (DFAs are not monitors)

▶ DFAs construction for $G(x' > x) \wedge F(x = 2)$

Example (DFAs are not monitors)

▶ DFAs construction for $G(x' > x) \wedge F(x = 2)$

sequence of monitoring states and DFA states

Fact

Monitoring with lookahead is not solvable: reduction from reachability in 2CM

Monitoring with lookahead is not solvable

problem: state reachability depends on assignment

Example (DFAs are not monitors)

▶ DFAs construction for $G(x' > x) \wedge F(x = 2)$

sequence of monitoring states and DFA states

Fact

Monitoring with lookahead is not solvable: reduction from reachability in 2CM

given DFA state q reached by trace τ , find **condition** whether final DFA state is reachable from q after τ

given DFA state q reached by trace τ , find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

▶ history constraints are constraints accumulated along paths in DFA:

 $h(A \rightarrow C) = (x = x_0 \land x \neq 2)$ $h(A \rightarrow C \rightarrow C) = \exists x_1 \ldotp (x_1 = x_0 \land x_1 \neq 2) \land (x \geq x_1 \land x \neq 2)$ $h(A \to C \to C \to C) = \exists x_1 x_2 \cdot \cdots \wedge (x \geq x_2 \wedge x \neq 2)$

given DFA state q reached by trace τ , find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

▶ history constraints are constraints accumulated along paths in DFA:

 $h(A \rightarrow C) = (x = x_0 \land x \neq 2)$ $h(A \rightarrow C \rightarrow C) = \exists x_1 \ldotp (x_1 = x_0 \land x_1 \neq 2) \land (x \geq x_1 \land x \neq 2)$ $h(A \to C \to C \to C) = \exists x_1 x_2 \cdot \cdots \wedge (x \geq x_2 \wedge x \neq 2)$

given DFA state q reached by trace τ , find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

history constraints are constraints accumulated along paths in DFA: by quantifier elimination

 $h(A \rightarrow C) = (x = x_0 \land x \neq 2)$ $h(A \rightarrow C \rightarrow C) = \exists x_1 \ldots (x_1 = x_0 \land x_1 \neq 2) \land (x \geq x_1 \land x \neq 2) \equiv x_0 \neq 2 \land x \geq x_0$ $h(A \to C \to C \to C) = \exists x_1 x_2 \cdot \cdots \wedge (x \geq x_2 \wedge x \neq 2)$ $\equiv x_0 \neq 2 \wedge x \geq x_0$

given DFA state q reached by trace τ , find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

▶ history constraints are constraints accumulated along paths in DFA:

$$
h(A \to C) = (x = x_0 \land x \neq 2)
$$

\n
$$
h(A \to C \to C) = \exists x_1. (x_1 = x_0 \land x_1 \neq 2) \land (x \ge x_1 \land x \neq 2) \equiv x_0 \neq 2 \land x \ge x_0
$$

\n
$$
h(A \to C \to C \to C) = \exists x_1 x_2. \dots \land (x \ge x_2 \land x \neq 2) \equiv x_0 \neq 2 \land x \ge x_0
$$

\n
$$
\equiv x_0 \neq 2 \land x \ge x_0
$$

Exercise 1 constraint graph $CG(q)$ represents history constraints for all paths from q

given DFA state q reached by trace τ , find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

▶ history constraints are constraints accumulated along paths in DFA:

$$
h(A \to C) = (x = x_0 \land x \neq 2)
$$

\n
$$
h(A \to C \to C) = \exists x_1. (x_1 = x_0 \land x_1 \neq 2) \land (x \ge x_1 \land x \neq 2) \equiv x_0 \neq 2 \land x \ge x_0
$$

\n
$$
h(A \to C \to C \to C) = \exists x_1 x_2. \dots \land (x \ge x_2 \land x \neq 2) \equiv x_0 \neq 2 \land x \ge x_0
$$

\n
$$
\equiv x_0 \neq 2 \land x \ge x_0
$$

constraint graph $CG(q)$ represents history constraints for all paths from q

given DFA state q reached by trace τ , find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

 \triangleright history constraints are constraints accumulated along paths in DFA:

$$
h(A \to C) = (x = x_0 \land x \neq 2)
$$

\n
$$
h(A \to C \to C) = \exists x_1. (x_1 = x_0 \land x_1 \neq 2) \land (x \ge x_1 \land x \neq 2) \equiv x_0 \neq 2 \land x \ge x_0
$$

\n
$$
h(A \to C \to C \to C) = \exists x_1 x_2. \dots \land (x \ge x_2 \land x \neq 2) \equiv x_0 \neq 2 \land x \ge x_0
$$

\n
$$
\equiv x_0 \neq 2 \land x \ge x_0
$$

constraint graph $CG(q)$ represents history constraints for all paths from q

given DFA state q reached by trace τ , find **condition** whether final DFA state is reachable from q after τ

Approach: Symbolic finite state abstraction

history constraints are constraints accumulated along paths in DFA:

$$
h(A \to C) = (x = x_0 \land x \neq 2)
$$

\n
$$
h(A \to C \to C) = \exists x_1. (x_1 = x_0 \land x_1 \neq 2) \land (x \ge x_1 \land x \neq 2) \equiv x_0 \neq 2 \land x \ge x_0
$$

\n
$$
h(A \to C \to C \to C) = \exists x_1 x_2. \dots \land (x \ge x_2 \land x \neq 2) \equiv x_0 \neq 2 \land x \ge x_0
$$

\n
$$
\equiv x_0 \neq 2 \land x \ge x_0
$$

constraint graph $CG(q)$ represents history constraints for all paths from q

▶ formulas in final nodes of CG give **condition** for reachability of final DFA states: captured by $FSat(CG(q))$ (similarly FUns(CG(q)))

Monitoring procedure

all monitoring structures can be computed upfront (DFA, CGs, FSat, FUns)

- 1: **procedure** MONITOR (ψ, τ)
- 2: compute DFA for ψ
- 3: $w \leftarrow$ word over constraints consistent with τ
- 4: $q \leftarrow$ DFA state in such that $\{q_0\} \rightarrow_w^* q$
- 5: $\alpha \leftarrow$ last assignment in τ
- 6: if q accepting in DFA then
- 7: return (cs if $\alpha \models \text{Flins}(\text{CG}(q))$ else ps)
- 8: else return (cv if $\alpha \models \textsf{FSat}(\textsf{CG}(q))$ else pv)

Monitoring procedure

all monitoring structures can be computed upfront (DFA, CGs, FSat, FUns)

- 1: **procedure** MONITOR (ψ, τ)
- 2: compute DFA for ψ
- 3: $w \leftarrow$ word over constraints consistent with τ
- 4: $q \leftarrow$ DFA state in such that $\{q_0\} \rightarrow_w^* q$
- 5: $\alpha \leftarrow$ last assignment in τ
- 6: if q accepting in DFA then
- 7: return (cs if $\alpha \models$ FUns(CG(q)) else ps)
- 8: else return (cv if $\alpha \models \textsf{FSat}(\textsf{CG}(q))$ else pv)

Theorem (Correctness)

if $MONTOR(\psi, \tau) = s$ then s is monitoring state for ψ and τ

Monitoring procedure

all monitoring structures can be computed upfront (DFA, CGs, FSat, FUns)

does not terminate if CGs infinite

- 1: **procedure** MONITOR (ψ, τ)
- 2: compute DFA for ψ
- 3: $w \leftarrow$ word over constraints consistent with τ
- 4: $q \leftarrow$ DFA state in such that $\{q_0\} \rightarrow_w^* q$
- 5: $\alpha \leftarrow$ last assignment in τ
- 6: if q accepting in DFA then
- 7: return (cs if $\alpha \models$ FUns(CG(q)) else ps)
- 8: else return (cv if $\alpha \models \textsf{FSat}(\textsf{CG}(q))$ else pv)

Theorem (Correctness)

if $MONTOR(\psi, \tau) = s$ then s is monitoring state for ψ and τ

previously used in context of model checking [FMW22]

Definition (Finite summary)

property ψ has finite summary if paths in DFA for ψ are covered by finitely many history constraints

[FMW22] P. Felli, M. Montali, S. Winkler. Linear-time verification of data-aware dynamic systems with arithmetic. AAAI-36(5), 5642-5650, 2022

previously used in context of model checking [FMW22]

Definition (Finite summary)

property ψ has finite summary if paths in DFA for ψ are covered by finitely many history constraints

Observation

for properties with finite summary, constraint graphs are finite

[FMW22] P. Felli, M. Montali, S. Winkler. Linear-time verification of data-aware dynamic systems with arithmetic. AAAI-36(5), 5642-5650, 2022

previously used in context of model checking [FMW22]

Definition (Finite summary)

property ψ has finite summary if paths in DFA for ψ are covered by finitely many history constraints

Observation

for properties with finite summary, constraint graphs are finite

Theorem

monitoring task is solvable for any ψ that has finite summary, and MONITOR is monitoring procedure

[FMW22] P. Felli, M. Montali, S. Winkler. Linear-time verication of data-aware dynamic systems with arithmetic. AAAI-36(5), 5642-5650, 2022

Property classes that enjoy finite summary

• monotonicity constraint properties over $\mathbb Q$ or $\mathbb Z$ $G(x' > x) \wedge F(x = 2)$ (all constraints are variable-to-variable/constant comparisons)

S. Demri and D. D'Souza: An automata-theoretic approach to constraint LTL. Inform. Comput., 205(3): 380-415, 2007.

Property classes that enjoy finite summary

- **monotonicity constraint** properties over $\mathbb Q$ or $\mathbb Z$ $G(x' > x) \wedge F(x = 2)$ (all constraints are variable-to-variable/constant comparisons)
- integer periodicity constraint properties $F(x' > 3) \wedge G(x \equiv_7 2)$ (variable-to-variable/constant comparisons with modulo operator)

S. Demri: LTL over integer periodicity constraints. Theor. Comput. Sci., 360(1-3): 96-123, 2006.

Property classes that enjoy finite summary

- **monotonicity constraint** properties over $\mathbb Q$ or $\mathbb Z$ $G(x' > x) \wedge F(x = 2)$ (all constraints are variable-to-variable/constant comparisons)
- \blacktriangleright integer periodicity constraint properties $F(x' > 3) \wedge G(x \equiv_7 2)$ (variable-to-variable/constant comparisons with modulo operator)
- \blacktriangleright bounded lookback properties $F(x' > y) \wedge G(x + z = 7)$ (restriction on interaction of constraints via lookahead, generalizes feedback freedom)

E. Damaggio, A. Deutsch and V. Vianu: Artifact systems with data dependencies and arithmetic. ACM Trans. Database Syst., 37(3): 22:1-22:36, 2012

Property classes that enjoy finite summary

- **monotonicity constraint** properties over $\mathbb Q$ or $\mathbb Z$ $G(x' > x) \wedge F(x = 2)$ (all constraints are variable-to-variable/constant comparisons)
- \blacktriangleright integer periodicity constraint properties (variable-to-variable/constant comparisons with modulo operator)
- \blacktriangleright bounded lookback properties $F(x' > y) \wedge G(x + z = 7)$ (restriction on interaction of constraints via lookahead, generalizes feedback freedom)

Non-solvable class

 \blacktriangleright gap-order properties (all constraints are gap-order comparisons)

L. Bozzelli and S. Pinchinat: Verification of gap- order constraint abstractions of counter systems. Theor. Comput. Sci., 523: 1-36, 2014

 $(y - y \geqslant 3) \wedge F(x - z' \geqslant 2)$

 $F(x' > 3) \wedge G(x \equiv_7 2)$

Property classes that enjoy finite summary

- **monotonicity constraint** properties over $\mathbb Q$ or $\mathbb Z$ $G(x' > x) \wedge F(x = 2)$ (all constraints are variable-to-variable/constant comparisons)
- \blacktriangleright integer periodicity constraint properties $F(x' > 3) \wedge G(x \equiv_7 2)$ (variable-to-variable/constant comparisons with modulo operator)
- \blacktriangleright bounded lookback properties $F(x' > y) \wedge G(x + z = 7)$ (restriction on interaction of constraints via lookahead, generalizes feedback freedom)

L. Bozzelli and S. Pinchinat: Verification of gap- order constraint abstractions of counter systems. Theor. Comput. Sci., 523: 1-36, 2014

 \blacksquare ALTL_f monitoring with linear arithmetic constraints:

without lookahead: solvable (DFA construction for monitors) with lookahead: not solvable

- \blacksquare ALTL_f monitoring with linear arithmetic constraints: without lookahead: solvable (DFA construction for monitors) with lookahead: not solvable
- 2 general monitoring procedure for lookahead properties: terminates for finite summary properties

- 1 ALTL_f monitoring with linear arithmetic constraints: without lookahead: solvable (DFA construction for monitors) with lookahead: not solvable
- 2 general monitoring procedure for lookahead properties: terminates for finite summary properties
- 3 solvability for several practical classes of formulae: monotonicity and integer periodicity constraints, bounded lookback

- 1 ALTL_f monitoring with linear arithmetic constraints: without lookahead: solvable (DFA construction for monitors) with lookahead: not solvable
- 2 general monitoring procedure for lookahead properties: terminates for finite summary properties
- ³ solvability for several practical classes of formulae: monotonicity and integer periodicity constraints, bounded lookback
- 4 SMT-based prototype ada witnesses feasibility of approach

 \blacksquare ALTL_f monitoring with linear arithmetic constraints:

- 1 ALTL_f monitoring with linear arithmetic constraints: without lookahead: solvable (DFA construction for monitors) with lookahead: not solvable
- ² general monitoring procedure for lookahead properties: terminates for finite summary properties
- ³ solvability for several practical classes of formulae: monotonicity and integer periodicity constraints, bounded lookback
- ⁴ SMT-based prototype ada witnesses feasibility of approach

Future work

- lift approach to richer properties equipped with full-fledged relations
- possibly study more general, controlled first-order quantification across time