

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Approximating Multi-Perspective Trace Alignment Using Trace Encodings

Alessandro Gianola, Jonghyeon Ko, Fabrizio Maria Maggi, Marco Montali, and Sarah Winkler Free University of Bozen-Bolzano, Italy

21st International Conference on Business Process Management

14 September 2023, Utrecht

Classical conformance checking

Classical conformance checking

Approximate conformance checking

Advantages

- ▶ fast (approximate) conformance checking
- user can choose encoding that prioritizes important trace aspects

Data Petri net (DPN)

► based on Petri net

Example

Data Petri net (DPN)

- ▶ based on Petri net
- ► data: set of "global" variables V with numeric domain (Q or Z)

Data Petri net (DPN)

- ▶ based on Petri net
- ▶ data: set of "global" variables V with numeric domain (Q or Z)
- transitions have guards that read and write variables:
 linear arithmetic expressions over V^r and V^w

Example

Data Petri net (DPN)

- based on Petri net
- ► data: set of "global" variables V with numeric domain (Q or Z)
- transitions have guards that read and write variables:
 linear arithmetic expressions over V^r and V^w

Example \cdot^{r} for read, \cdot^{w} for written variables \mathbf{v}

Data Petri net (DPN)

- ▶ based on Petri net
- ► data: set of "global" variables V with numeric domain (Q or Z)
- \blacktriangleright transitions have guards that read and write variables: linear arithmetic expressions over V^r and V^w

Example

Data Petri net (DPN)

- based on Petri net
- ► data: set of "global" variables V with numeric domain (Q or Z)
- transitions have guards that read and write variables:
 linear arithmetic expressions over V^r and V^w

Data Petri net (DPN)

- based on Petri net
- ► data: set of "global" variables V with numeric domain (Q or Z)
- transitions have guards that read and write variables:
 linear arithmetic expressions over V^r and V^w

Example $y^r \leqslant 10$

Assumption

- ▶ all guards are conjunctions of variable-to-constant comparisons
- ▶ this holds for guards automatically mined from data

[Mannhardt et al 2016, de Leoni 2013]

Log trace

sequence of events containing activity and assignment

A x = 1	A x=	B y = 2	С
---------	------	----------	---

sequence of events containing activity and assignment

A x = 1 A x = 0 B y = 2 C

Alignment

- combines log trace and model trace in sequence of moves
- every move has cost according to cost function:
 optimal alignment is the one with lowest cost

A×	i = 1	А	<i>x</i> = 0	В	<i>y</i> = 2	С	
A ×	i = 1	2	>	В	<i>y</i> = 2	С	

[Balanced multi-perspective conformance checking, Mannhardt et al 2016]

sequence of events containing activity and assignment

Alignment

- combines log trace and model trace in sequence of moves
- every move has cost according to cost function: optimal alignment is the one with lowest cost

A x = 1 A x = 0 B y = 2

[Balanced multi-perspective conformance checking, Mannhardt et al 2016]

Fact

for DPN \mathcal{N} and trace e, can compute $bound(\mathcal{N}, e)$ on length of model trace in optimal alignment

sequence of events containing activity and assignment

Alignment

- combines log trace and model trace in sequence of moves
- every move has cost according to cost function: optimal alignment is the one with lowest cost

A x = 1 A x = 0 B y =

[Balanced multi-perspective conformance checking, Mannhardt et al 2016]

Fact

for DPN N and trace e, can compute bound(N, e) on length of model trace in optimal alignment: get worst-case alignment from shortest process run f_1, \ldots, f_k and $e = e_1, \ldots, e_m$

$$\begin{array}{cccc} e_1 & e_2 & \cdots & e_m \gg \gg \cdots \gg \\ \gg \gg & \cdots & \gg & f_1 & f_2 & \cdots & f_k \end{array}$$

[Data-aware conformance checking with SMT, Felli et al 2023]

 infinite number of data values, but behavior only depends on whether values are within bounds

- infinite number of data values, but behavior only depends on whether values are within bounds
- ► for every variable, consider set of intervals:

 $\begin{array}{lll} x: &]-\infty, 1[& [1,\infty] \\ y: &]-\infty, 2[& [2,10] &]2,\infty] \end{array}$

- infinite number of data values, but behavior only depends on whether values are within bounds
- ► for every variable, consider set of intervals:
 - $\begin{array}{lll} x: &]-\infty, 1[& [1,\infty] \\ y: &]-\infty, 2[& [2,10] &]2,\infty] \end{array}$

Abstract trace

sequence of abstract events containing activity and assignment to intervals

А	$x \in [1,\infty]$	А	$x \in]-\infty, 1[$	В	$y \in [2,\infty[$	С	
---	--------------------	---	----------------------	---	--------------------	---	--

- infinite number of data values, but behavior only depends on whether values are within bounds
- ► for every variable, consider set of intervals:
 - $\begin{array}{lll} x: &]-\infty, 1[& [1,\infty] \\ y: &]-\infty, 2[& [2,10] &]2,\infty] \end{array}$

 \blacktriangleright can represent all model traces up to length k by finite set of abstract traces

Abstract trace

sequence of abstract events containing activity and assignment to intervals

А	$x\!\in\![1,\!\infty]$	А	$x \in]-\infty, 1[$	В	$y \in [2,\infty[$	С	
---	------------------------	---	----------------------	---	--------------------	---	--

 $x \in [1,\infty]$ $v \in [2,10]$

- infinite number of data values, but behavior only depends on whether values are within bounds
- ► for every variable, consider set of intervals:
 - $\begin{array}{lll} x \colon &] \infty, 1 [& [1, \infty] \\ y \colon &] \infty, 2 [& [2, 10] & &]2, \infty] \end{array}$

 \blacktriangleright can represent all model traces up to length k by finite set of abstract traces

Abstract trace

sequence of abstract events containing activity and assignment to intervals

А	$x \in [1,\infty]$	А	$x \in]-\infty, 1[$	В	$y \in [2,\infty[$	С	
---	--------------------	---	----------------------	---	--------------------	---	--

Key idea

- ▶ compute set T of all abstract model traces up to length bound(N, e)
- \blacktriangleright given log trace e, search for closest model trace in ${\cal T}$

count frequency of activity labels and intervals

count frequency of activity labels and intervals

2. Boolean

presence of activity labels and intervals

(1, 1, 1, 1, 1, 0, 0, 1)

(2,1,1,1,1,0,0,1)

count frequency of activity labels and intervals

2. Boolean

presence of activity labels and intervals

3. Complex index

for each trace position: presence of each activity and each interval

A at position 2

count frequency of activity labels and intervals

2. Boolean

presence of activity labels and intervals

3. Complex index

for each trace position: presence of each activity and each interval

4. Last state

like aggregate for control flow, but only last interval for data values

l	
1. Aggregate count frequency of activity labels and intervals	(2,1,1,1,1,0,0,1)
2. Boolean presence of activity labels and intervals	(1,1,1,1,1,0,0,1)
3. Complex index for each trace position: presence of each activity and each interval	(1,0,0,1,0,0,0,0,0,)
4. Last state like aggregate for control flow, but only last interval for	(2,1,1,1,3)
5. Aggregate + <i>p</i> - grams enhance aggregate encoding with <i>p</i> -grams for activity la	(2,1,1,1,1,0,0,1,1,1,) bels weighted number of occurrences of AA weighted number of occurrences of AB

$A \qquad x \in [1,\infty]$	A $x \in]-\infty,1[$ B $y \in [2,\infty[$ C
1. Aggregate count frequency of activity labels and intervals	(2,1,1,1,1,0,0,1)
2. Boolean presence of activity labels and intervals	(1,1,1,1,1,0,0,1)
3. Complex index for each trace position: presence of each activity and each interval	(1,0,0,1,0,0,0,0,0,)
4. Last state like aggregate for control flow, but only last interval for data values	(2,1,1,1,3)
5. Aggregate $+ p$ -grams enhance aggregate encoding with <i>p</i> -grams for activity labels	(2,1,1,1,1,0,0,1,1,1,)

[Complex symbolic sequence encodings for predictive monitoring of business processes. Leontieva et al 2015]

Solving the Alignment Problem using kNN

Solving the Alignment Problem using kNN

Technical details

experiment with different distance measures: euclidean, manhattan, cosine

Solving the Alignment Problem using kNN

Technical details

- experiment with different distance measures: euclidean, manhattan, cosine
- useful: weigh vector components to give same weight to control flow and data (improve precision by 25%)

Setup

- ▶ compute model trace abstractions up to certain length for sepsis and road fines data sets
- ► for every log trace
 - \blacktriangleright compute optimal alignment using CoCoMoT, and respective (abstract) model trace ${\bf f}$
 - ▶ compute k best-matching (abstract) model traces P using approximate approach

Setup

- ▶ compute model trace abstractions up to certain length for sepsis and road fines data sets
- ► for every log trace
 - \blacktriangleright compute optimal alignment using CoCoMoT, and respective (abstract) model trace ${\bf f}$
 - ▶ compute k best-matching (abstract) model traces P using approximate approach
- measure on entire log
 - precision: how often f is in P
 - \blacktriangleright similarity: average distance of **f** to model traces in *P*

Similarity (road fines, sepsis)

Encoding method	Distance metric	k	Similarity (ref = CoCoMot)	Time (sec)
agg regate	Cosine	(1/3/5/10)	(0.971 / 0.971 / 0.971 / 0.973)	(0.07 / 0.07 / 0.07 / 0.07)
agg regate	E uc lid ea n	(1/3/5/10)	(0.963 / 0.963 / 0.963 / 0.960)	(0.11 / 0.12 / 0.12 / 0.12)
agg regate	Manhattan	(1/3/5/10)	(0.933 / 0.938 / 0.942 / 0.948)	(0.18 / 0.13 / 0.16 / 0.14)
boo lea n	Cosine	(1/3/5/10)	(0.978 / 0.978 / 0.978 / 0.977)	(0.06 / 0.07 / 0.08 / 0.08)
boo lea n	Eucliclean	(1/3/5/10)	(0.978 / 0.978 / 0.978 / 0.977)	(0.16 / 0.12 / 0.12 / 0.17)
boo lea n	Manhattan	(1/3/5/10)	(0.978 / 0.978 / 0.978 / 0.977)	(0.13 / 0.13 / 0.14 / 0.14)
complexindex	Cosine	(1		5 / 0.25 / 0.25)
complexindex	Eucliciean	(1 D	e gram + aggregat	1 / 0.35 / 0.35)
complexindex	Manhattan	(1 P	Brann Laggrega	8 / 0.70 / 0.64)
as tstate	Cosine) for hest single	trace 7 / 0.07 / 0.07)
aststate	Eucliclean	(1 0.95	for best single	2 / 0.12 / 0.17)
aststate	Manhattan	(1, 3/3/10)	(0.303 /305 / 0.304 / 0.304 /	(0.13 / 0.18 / 0.13 / 0.14)
p-gram+aggregate	Cosine	(1/3/5/10)	(0.9 0 / 0.996 / 0.996 / 0.995)	(0.06 / 0.07 / 0.06 / 0.07)
p-gram+aggregate	E uc lid ea n	(1/3/5/10)	(9.996 / 0.996 / 0.996 / 0.995)	(0.10 / 0.10 / 0.15 / 0.11)
p-gram+aggregate	Manhattan	(1/3/5/10)	(0.996 / 0.996 / 0.996 / 0.995)	(0.15 / 0.12 / 0.13 / 0.12)

Free disc method	Distance metals		complex	kindex:
Encoding method	Distance metric	K	5001	. –
a ggregate	Cosine	(1/3/5/10)	0.62 for best	single trace
aggregate	Euclidean	(1/3/5/10)	(0.60 0.02 101 0050	single trace
aggregate	Man ha tta n	(1/3/5/10)	(0.60	
boolean	Cosine	(1/3/5/10)	(0.606 / 0.606 / 0.69 / 0.606)	(0.01 / 0.01 / 0.01 / 0.01)
boolea n	Euclidean	(1/3/5/10)	(0.606 / 0.606 / 0.606 / 0.607)	(0.02 / 0.02 / 0.01 / 0.02)
boolea n	Man hattan	(1/3/5/10)	(0.606 / 0.606 / 0.606 / 0.606)	(0.02 / 0.02 / 0.02 / 0.02)
com plex index	Cosine	(1/3/5/10)	(0.620 / 0.620 / 0.620 / 0.620)	(0.04 / 0.04 / 0.04 / 0.04)
com plex in dex	Euclidean	(1/3/5/10)	(0.619 / 0.620 / 0.620 / 0.620)	(0.04 / 0.04 / 0.04 / 0.04)
com plex in dex	Man ha ttan	(1/3/5/10)	(0.619 / 0.620 / 0.620 / 0.621)	(0.05 / 0.05 / 0.05 / 0.05)
laststate	Cosine	(1/3/5/10)	(0.603 / 0.602 / 0.601 / 0.602)	(0.01 / 0.01 / 0.01 / 0.01)
aststate	Euclidean	(1/3/5/10)	(0.603 / 0.601 / 0.600 / 0.600)	(0.02 / 0.02 / 0.02 / 0.02)
laststate	Man ha ttan	(1/3/5/10)	(0.603 / 0.601 / 0.600 / 0.601)	(0.01 / 0.02 / 0.02 / 0.02)
p•g ram+aggregate	Cosine	(1/3/5/10)	(0.604 / 0.607 / 0.607 / 0.607)	(0.01 / 0.01 / 0.01 / 0.01)
p•g ram+agg regate	Euclidean	(1/3/5/10)	(0.605 / 0.607 / 0.607 / 0.607)	(0.03 / 0.02 / 0.02 / 0.02)
p•g ram+aggregate	Man ha tta n	(1/3/5/10)	(0.605 / 0.607 / 0.606 / 0.607)	(0.02 / 0.02 / 0.02 / 0.02)

Similarity (road fines, sepsis)

Encoding method	Distance metric	k	Similarity (ref = CoCoMot)	Time (sec)
agg regate	Cosine	(1/3/5/10)	(0.971 / 0.971 / 0.971 / 0.973)	(0.07 / 0.07 / 0.07 / 0.07)
agg regate	E uc lid ea n	(1/3/5/10)	(0.963 / 0.963 / 0.963 / 0.960)	(0.11 / 0.12 / 0.12 / 0.12)
agg regate	Manhattan	(1/3/5/10)	(0.933 / 0.938 / 0.942 / 0.948)	(0.18 / 0.13 / 0.16 / 0.14)
boo lea n	Cosine	(1/3/5/10)	(0.978 / 0.978 / 0.978 / 0.977)	(0.06 / 0.07 / 0.08 / 0.08)
boo lea n	E uc lid ea n	(1/3/5/10)	(0.978 / 0.978 / 0.978 / 0.977)	(0.16 / 0.12 / 0.12 / 0.17)
boo lea n	Manhattan	(1/3/5/10)	(0.978 / 0.978 / 0.978 / 0.977)	(0.13 / 0.13 / 0.14 / 0.14)
complexindex	Cosine	(1		5 / 0.25 / 0.25)
complexindex	Euclidean	(1 D	-gram+aggrega	1 / 0.35 / 0.35)
complexindex	Manhattan	(1	8141111 4881684	8 / 0.70 / 0.64)
aststate	Cosine) for best single	trace 7 / 0.07 / 0.07)
aststate	E uc lid ea n	(1 0.55	for best single	2 / 0.12 / 0.17)
aststate	Manhattan	(1, 3/3/10)	(0.303 / 303 / 0.304 / 0.304 /	(0.13 / 0.18 / 0.13 / 0.14)
p-gram+aggregate	Cosine	(1/3/5/10)	(0.9 / 0.996 / 0.996 / 0.995)	(0.06 / 0.07 / 0.06 / 0.07)
p-gram+aggregate	E uc lid ea n	(1/3/5/10)	(0.996 / 0.996 / 0.996 / 0.995)	(0.10 / 0.10 / 0.15 / 0.11)
p-gram+aggregate	Manhattan	(1/3/5/10)	(0.996 / 0.996 / 0.996 / 0.995)	(0.15 / 0.12 / 0.13 / 0.12)

Encoding method	Distance metric	L.	complexindex:
aggregate	Cosine	(1/3/5/10)	
aggregate	Euclidean	(1/3/5/10)	0.62 for best single trace
aggregate	Man ha tta n	(1/3/5/10)	(0.60
boolea n	Cosine	(1/3/5/10)	(0.606 / 0.606 / 0.68 (0.606) (0.01 / 0.01 / 0.01 / 0.01
boolea n	Euclidean	(1/3/5/10)	(0.606 / 0.606 / 0.606 / 0.607) (0.02 / 0.02 / 0.01 / 0.02)
boolea n	Man hattan	(1/3/5/10)	(0.606 / 0.606 / 0.606 / 0.606) (0.02 / 0.02 / 0.02 / 0.02
com plex index	Cosine	(1/3/5/10)	(0.620 / 0.620 / 0.620 / 0.620) (0.04 / 0.04 / 0.04 / 0.04
com plex in dex	Euclidean	(1/3/5/10)	(0.619 / 0.620 / 0.620 / 0.620) (0.04 / 0.04 / 0.04 / 0.04
com plex in dex	Man ha ttan	(1/3/5/10)	(0.619 / 0.620 / 0.620 / 0.621) (0.05 / 0.05 / 0.05 / 0.05
laststate	Cosine	(1/3/5/10)	(0.603 / 0.602 / 0.601 / 0.602) (0.01 / 0.01 / 0.01 / 0.01
aststate	Euclidean	(1/3/5/10)	(0.603 / 0.601 / 0.600 / 0.600) (0.02 / 0.02 / 0.02 / 0.02
laststate	Man ha ttan	(1/3/5/10)	(0.603 / 0.601 / 0.600 / 0.601) (0.01 / 0.02 / 0.02 / 0.02
p•g ram+agg regate	Cosine	(1/3/5/10)	(0.604 / 0.607 / 0.607 / 0.607) (0.01 / 0.01 / 0.01 / 0.01
p•g ram+agg regate	Euclidean	(1/3/5/10)	(0.605 / 0.607 / 0.607 / 0.607) (0.03 / 0.02 / 0.02 / 0.02
p•g ram+agg regate	Man ha tta n	(1/3/5/10)	(0.605 / 0.607 / 0.606 / 0.607) (0.02 / 0.02 / 0.02 / 0.02

Precision (road fines, sepsis)

Encoding method	Distance metric	k (%)	Precision (ref = CoCoMot)	Time (sec)
agg regate	Cosine	(10 % / 20 % / 30 %)	(0.613 / 0.740 / 0.803)	(0.08 / 0.09 / 0.10)
agg regate	E uc lid ea n	(10 % / 20 % / 30 %)	(0.195 / 0.501 / 0.551)	(0.19 / 0.13 / 0.17)
agg regate	Manhattan	(10 % / 20 % / 30 %)	(0.195 / 0.518 / 0.555)	(0.14 / 0.21 / 0.16)
boo lea n	Cosine	(10% / 20% / 30%)	(0.580 / 0.712 / 0.756)	(0.08 / 0.17 / 0.10)
boo lea n	Eucliclean	(10 % / 20 % / 30 %)	(0.597 / 0.725 / 0.808)	(0.13 / 0.19 / 0.13)
boo lea n	Manhattan	(10 % / 20 % / 30 %)	(0.596 / 0.729 / 0.828)	(0.16 / 0.15 / 0.16)
complexindex	Cosine	(10 % / 20		28 / 0.24 / 0.27)
complexindex	Eucliclean	(10 % / 20 0 71	for best 10%	36 / 0.33 / 0.37)
complexindex	Manhattan	(10 % / 20	101 0000 10/0	70 / 0.73 / 0.67)
as tstate	Cosine	(10 % / 20 0 00	1 for best 30%	08 / 0.08 / 0.17)
as tstate	Euclidean	(10 % / 20	101 6631 3070	12 / 0.13 / 0.14)
as tstate	Manhattan	(10 % / 20 % / 30 %)	10 10 10.104 10.0021	. 16 / 0.18 / 0.16)
p-gram+aggregate	Cosine	(10% / 20% / 30%	(0.705 / 0.776 / 0.817)	(0.07 / 0.08 / 0.08)
p-gram+aggregate	E uc lid ea n	(10 % / 20 % / 30%)	(0.715 / 0.776 / 0.853)	(0.11 / 0.12 / 0.12)
p-gram+aggregate	Manhattan	(10 % / 20 % / 30 %)	(0.719 / 0.798 / 0.898)	(0.12 / 0.14 / 0.18)

Encoding method	Distance metric	k (%)	Precision (ref	0.00	C I	
aggregate	Cosine	(10% / 20% / 30%)	(0.813 / 0.833	0.92	for best 10%,	,
aggregate	Euclidean	(10% / 20% / 30%)	(0.888 / 0.898		6 1 0/	
aggregate	Manhattan	(10% / 20% / 30%)	(0.888 / 0.898	0.95	for best 30%	
boolean	Cosine	(10% / 20% / 30%)	(0.776 / 0.800			
boolean	Euclidean	(10% / 20% / 30%)	(0.854 / 0.864	/ 0.873)/	(0.02 / 0.02 / 0.02)	
boolean	Manhattan	(10% / 20% / 30%)	(0.852 / 0.864	/ 0.877	(0.02 / 0.02 / 0.03)	
com plexind ex	Cosine	(10% / 20% / 30%)	(0.816 / 0.816	i / 0.888)	(0.04 / 0.04 / 0.04)	
com plexindex	Eucliclean	(10% / 20% / 30%)	(0.891 / 0.931	/ 0.949)	(0.05 / 0.04 / 0.05)	
com plexindex	Manhattan	(10% / 20% / 30%)	(0.924 / 0.93	8 / 0.951)	(0.08 / 0.07 / 0.07)	
laststate	Cosine	(10% / 20% / 30%)	(0.822 / 0.822	/ 0.822)	(0.01 / 0.01 / 0.01)	
aststate	Eucliclean	(10% / 20% / 30%)	(0.857 / 0.923	(0.924)	(0.01 / 0.01 / 0.02)	
aststate	Manhattan	(10% / 20% / 30%)	(0.855 / 0.923	(0.924)	(0.02 / 0.02 / 0.02)	
p•g ra m +agg regate	Cosine	(10% / 20% / 30%)	(0.864 / 0.881	/ 0.891)	(0.01 / 0.01 / 0.01)	
p•g ram +agg regate	Euclidean	(10% / 20% / 30%)	(0.914 / 0.926	(0.939)	(0.02 / 0.02 / 0.02)	
p•g ram +agg regate	Manhattan	(10% / 20% / 30%)	(0.914 / 0.926	(0.939)	(0.04 / 0.03 / 0.03)	

Setup

- ▶ compute model trace abstractions up to certain length for sepsis and road fines data sets
- ► for every log trace
 - \blacktriangleright compute optimal alignment using CoCoMoT, and respective (abstract) model trace ${\bf f}$
 - ▶ compute k best-matching (abstract) model traces P using approximate approach
- ▶ measure on entire log
 - precision: how often f is in P
 - \blacktriangleright similarity: average distance of **f** to model traces in P

Performance

approximate approach is ~ 100 times faster than CoCoMoT, ~ 10 times faster than ProM

Conclusion

Advantages

- ▶ fast (approximate) conformance checking
- approximation as preprocessing: precise conformance checking can be applied to returned model traces

Conclusion

Advantages

- ▶ fast (approximate) conformance checking
- approximation as preprocessing: precise conformance checking can be applied to returned model traces

Future work

extend to probabilistic trace alignment and more general DPNs