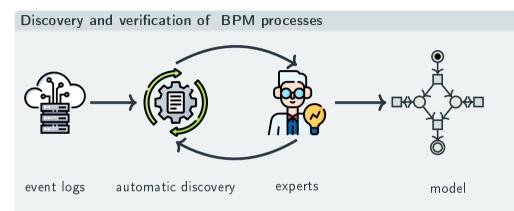
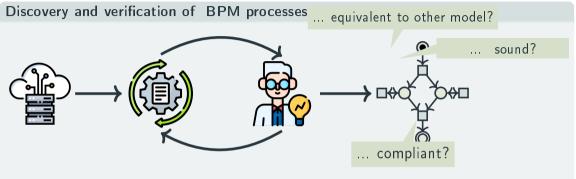
Using Logic to Escape the Jungle of Data-aware Process Verification

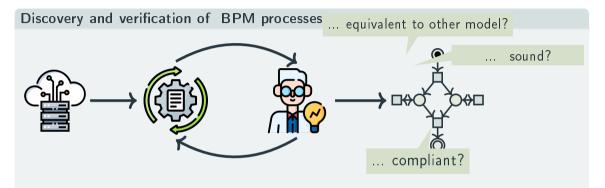
Sarah Winkler Free University of Bozen-Bolzano, Italy

seminar @ DTU Compute, 7.9.2023



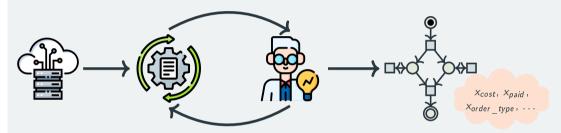


e.g. every order is eventually shipped



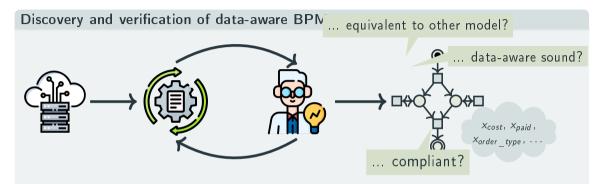
in Petri nets for typical BPM processes, verification tasks can be effectively decided

Discovery and verification of data-aware BPM processes



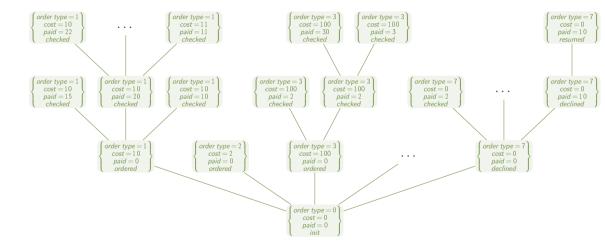
Assumption

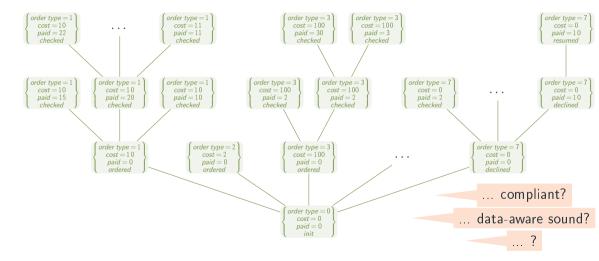
data is represented by numeric variables, can be read and written by transitions

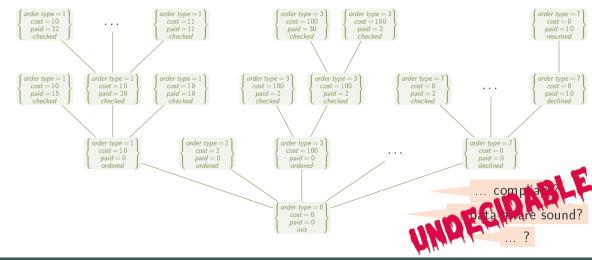


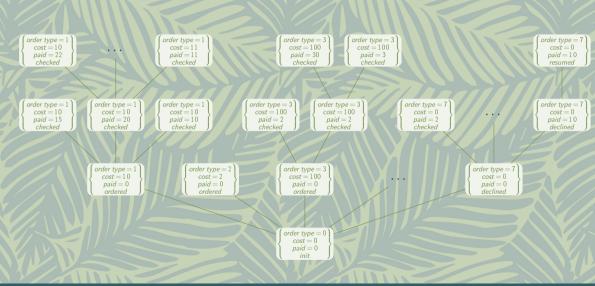
Assumption

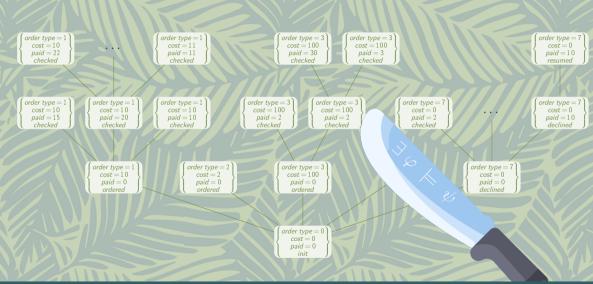
data is represented by numeric variables, can be read and written by transitions

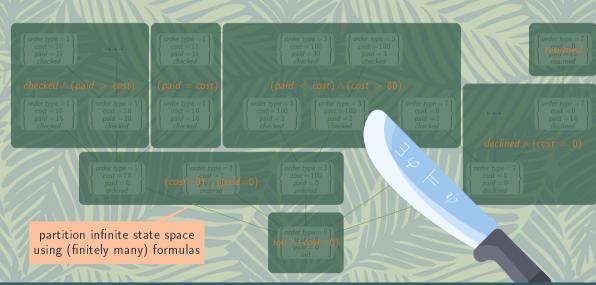


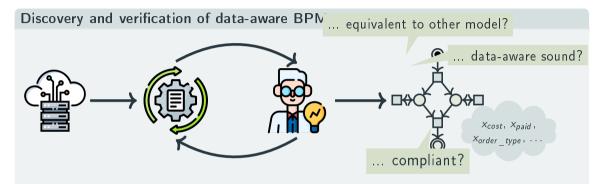








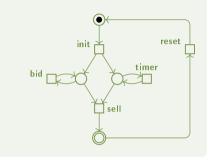




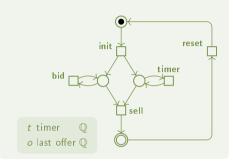
This talk identify classes of data-aware models where verification tasks are decidable

Outline

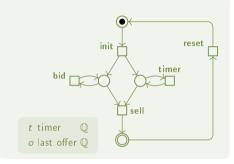
- ► based on Petri net
- initial and final markings M_I and M_F



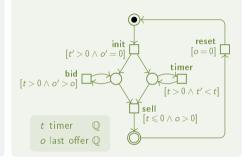
- ▶ based on Petri net
- initial and final markings M_I and M_F
- ► data: set of "global" variables V with numeric domain (Q or Z)



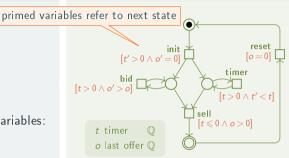
- based on Petri net
- initial and final markings M_I and M_F
- ► data: set of "global" variables V with numeric domain (Q or Z)
- initial values of V are fixed by valuation α_0



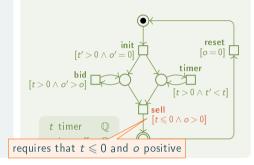
- ▶ based on Petri net
- initial and final markings M_I and M_F
- ► data: set of "global" variables V with numeric domain (Q or Z)
- \blacktriangleright initial values of V are fixed by valuation α_0
- transitions have guards that read and write variables: linear arithmetic expressions over V and V'

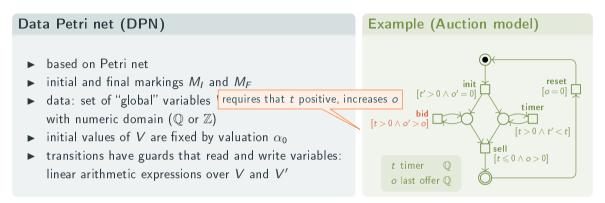


- based on Petri net
- initial and final markings M_I and M_F
- ► data: set of "global" variables V with numeric domain (Q or Z)
- \blacktriangleright initial values of V are fixed by valuation α_0
- transitions have guards that read and write variables:
 linear arithmetic expressions over V and V'

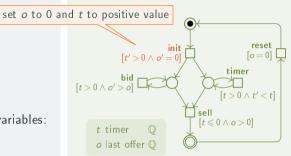


- based on Petri net
- initial and final markings M_I and M_F
- ► data: set of "global" variables V with numeric domain (Q or Z)
- \blacktriangleright initial values of V are fixed by valuation α_0
- transitions have guards that read and write variables:
 linear arithmetic expressions over V and V'

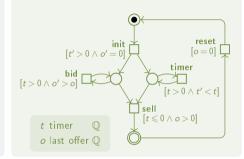




- based on Petri net
- initial and final markings M_I and M_F
- ► data: set of "global" variables V with numeric domain (Q or Z)
- \blacktriangleright initial values of V are fixed by valuation α_0
- transitions have guards that read and write variables:
 linear arithmetic expressions over V and V'



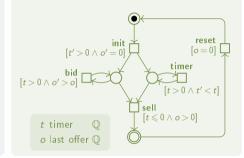
- based on Petri net
- initial and final markings M_I and M_F
- ► data: set of "global" variables V with numeric domain (Q or Z)
- \blacktriangleright initial values of V are fixed by valuation α_0
- transitions have guards that read and write variables:
 linear arithmetic expressions over V and V'



Background logic

- ▶ propositional logic + theory of linear arithmetic over integers and rationals
- ▶ satisfiability is decidable (SMT solvers), quantifiers can be eliminated

- based on Petri net
- initial and final markings M_I and M_F
- ► data: set of "global" variables V with numeric domain (Q or Z)
- \blacktriangleright initial values of V are fixed by valuation α_0
- transitions have guards that read and write variables:
 linear arithmetic expressions over V and V'



Remark

- DPNs can be mined automatically from data
- used to model BPM processes from various domains

[Mannhardt et al 2016, de Leoni 2013]

[Mannhardt et al 2016, Mannhardt 2018]

Observation if underlying Petri net is **bounded**, DPN has finite set of markings: can be **unfolded**

if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

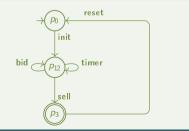
Data-aware Dynamic System with Arithmetic (DDSA)

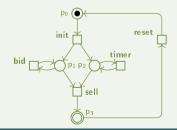
- labeled transition system
 - control states: markings of DPN
 - ► transitions: reflect firings in DPN

if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

- ► labeled transition system
 - control states: markings of DPN
 - transitions: reflect firings in DPN





if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

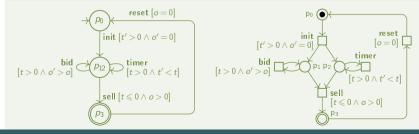
Data-aware Dynamic System with Arithmetic (DDSA)

- ► labeled transition system
 - ► control states: markings of DPN
 - transitions: reflect firings in DPN
- data variables V like in DPN, with α_0

if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

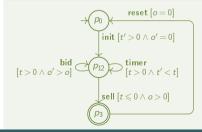
- ► labeled transition system
 - ► control states: markings of DPN
 - transitions: reflect firings in DPN, with same guards
- data variables V like in DPN, with α_0



if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

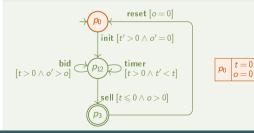
- ► labeled transition system
 - ► control states: markings of DPN
 - transitions: reflect firings in DPN, with same guards
- \blacktriangleright data variables V like in DPN, with α_0
- \blacktriangleright run is sequence of states and valuations of V



if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

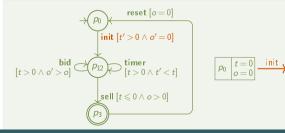
- ► labeled transition system
 - ► control states: markings of DPN
 - transitions: reflect firings in DPN, with same guards
- \blacktriangleright data variables V like in DPN, with α_0
- \blacktriangleright run is sequence of states and valuations of V



if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

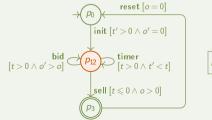
- ► labeled transition system
 - ► control states: markings of DPN
 - transitions: reflect firings in DPN, with same guards
- \blacktriangleright data variables V like in DPN, with α_0
- \blacktriangleright run is sequence of states and valuations of V



if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

- ► labeled transition system
 - ► control states: markings of DPN
 - transitions: reflect firings in DPN, with same guards
- \blacktriangleright data variables V like in DPN, with α_0
- \blacktriangleright run is sequence of states and valuations of V

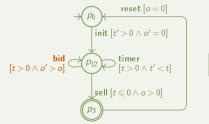


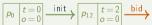
$\begin{array}{c c} P_0 & t = 0 \\ o = 0 \end{array} \xrightarrow{\text{init}} \begin{array}{c} P_{12} & t = 2 \\ o = 0 \end{array}$
--

if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

- ► labeled transition system
 - ► control states: markings of DPN
 - transitions: reflect firings in DPN, with same guards
- \blacktriangleright data variables V like in DPN, with α_0
- \blacktriangleright run is sequence of states and valuations of V

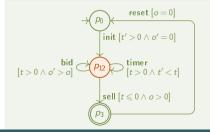


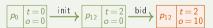


if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

- ► labeled transition system
 - ► control states: markings of DPN
 - transitions: reflect firings in DPN, with same guards
- \blacktriangleright data variables V like in DPN, with α_0
- \blacktriangleright run is sequence of states and valuations of V

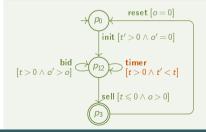


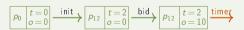


if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

- ► labeled transition system
 - ► control states: markings of DPN
 - transitions: reflect firings in DPN, with same guards
- \blacktriangleright data variables V like in DPN, with α_0
- \blacktriangleright run is sequence of states and valuations of V

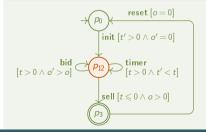




if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

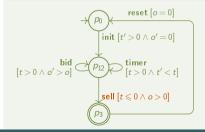
- ► labeled transition system
 - ► control states: markings of DPN
 - transitions: reflect firings in DPN, with same guards
- \blacktriangleright data variables V like in DPN, with α_0
- \blacktriangleright run is sequence of states and valuations of V



if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

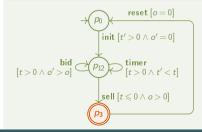
- ► labeled transition system
 - ► control states: markings of DPN
 - transitions: reflect firings in DPN, with same guards
- \blacktriangleright data variables V like in DPN, with α_0
- \blacktriangleright run is sequence of states and valuations of V



if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

- ► labeled transition system
 - ► control states: markings of DPN
 - transitions: reflect firings in DPN, with same guards
- \blacktriangleright data variables V like in DPN, with α_0
- \blacktriangleright run is sequence of states and valuations of V



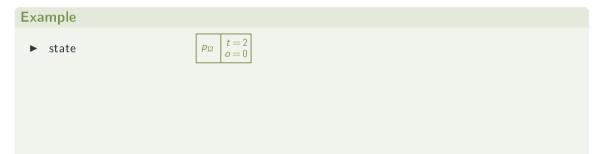
Definitions

• state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

Example

Definitions

• state of DDSA is tuple (s, α) of control state s and assignment α to data variables V



- state of DDSA is tuple (s, α) of control state s and assignment α to data variables V
- abstract state is tuple (s, φ) of control state s and formula φ with free variables V

- \blacktriangleright state of DDSA is tuple (s, α) of control state s and assignment α to data variables V
- \blacktriangleright abstract state is tuple (s, φ) of control state s and formula φ with free variables V

Definitions

- state of DDSA is tuple (s, α) of control state s and assignment α to data variables V
- \blacktriangleright abstract state is tuple (s, arphi) of control state s and formula arphi with free variables V
- ▶ (*s*, α) matches (*s*, φ) if $\alpha \models \varphi$

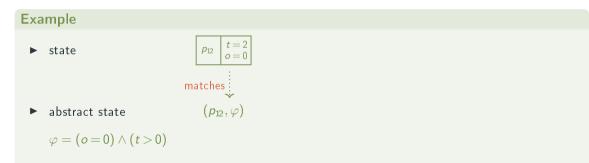
Example

state

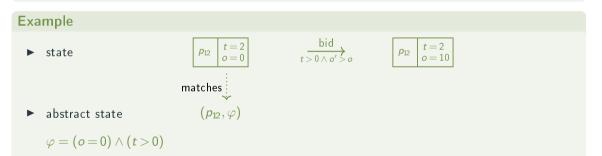
• abstract state (p_{12}, φ)

 $\varphi = (o = 0) \land (t > 0)$

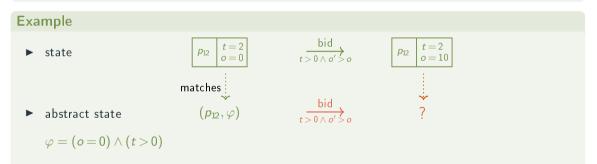
- state of DDSA is tuple (s, α) of control state s and assignment α to data variables V
- \blacktriangleright abstract state is tuple (s, arphi) of control state s and formula arphi with free variables V
- ▶ (*s*, α) matches (*s*, φ) if $\alpha \models \varphi$



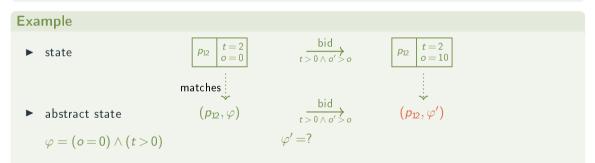
- state of DDSA is tuple (s, α) of control state s and assignment α to data variables V
- \blacktriangleright abstract state is tuple (s, φ) of control state s and formula φ with free variables V
- $\blacktriangleright \quad (s, \alpha) \text{ matches } (s, \varphi) \text{ if } \alpha \models \varphi$



- \blacktriangleright state of DDSA is tuple (s, α) of control state s and assignment α to data variables V
- \blacktriangleright abstract state is tuple (s, φ) of control state s and formula φ with free variables V
- $\blacktriangleright \quad (s, \alpha) \text{ matches } (s, \varphi) \text{ if } \alpha \models \varphi$



- \blacktriangleright state of DDSA is tuple (s, α) of control state s and assignment α to data variables V
- \blacktriangleright abstract state is tuple (s, φ) of control state s and formula φ with free variables V
- $\blacktriangleright \quad (s, \alpha) \text{ matches } (s, \varphi) \text{ if } \alpha \models \varphi$



for formula φ and transition $\textbf{\textit{a}}$ in DDSA

 $update(\varphi, a) =$

describes how formula arphi changes after transition a

Definition (Update) for formula φ and transition a i rename variables in formula to auxiliary $\widehat{V} = \{\widehat{v} \mid v \in V\}$ $update(\varphi, a) = \varphi(\widehat{V})$

for formula φ and transition a in DDSA

sition *a* in DDSA guard must hold, propagate variables that are not written

$$update(\varphi, a) = \varphi(\widehat{V}) \wedge guard_a(\widehat{V}, V) \wedge \widehat{V} = v$$

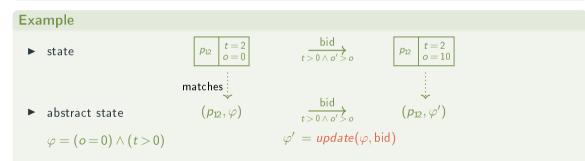
v∉write(a)

Definition (Update) \exists quantification to get formula with free variables Vfor formula φ and transition a in DDSA $update(\varphi, a) = \exists \hat{V}. (\varphi(\hat{V}) \land guard_a(\hat{V}, V) \land \bigwedge_{v \notin write(a)} \hat{v} = v)$

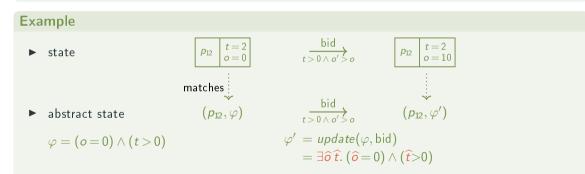
for formula φ and transition *a* in DDSA can get equivalent quantifier-free formula by quantifier elimination

$$up\,date(\varphi,a) = \exists \widehat{V}.\,(\varphi(\widehat{V}) \land guard_a(\widehat{V},V) \land \bigwedge_{v \notin write(a)} \widehat{v} = v)$$

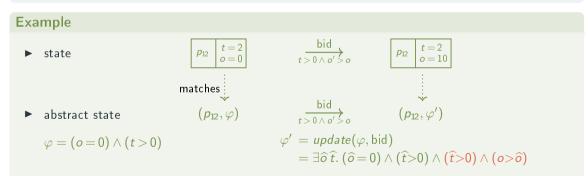
- \blacktriangleright state of DDSA is tuple (s, α) of control state s and assignment α to data variables V
- \blacktriangleright abstract state is tuple (s, φ) of control state s and formula φ with free variables V
- $\blacktriangleright \quad (s, \alpha) \text{ matches } (s, \varphi) \text{ if } \alpha \models \varphi$



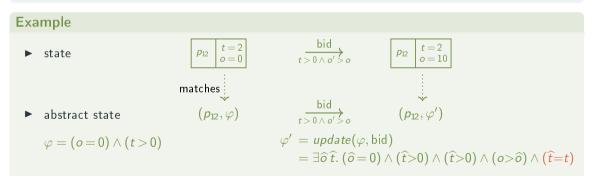
- \blacktriangleright state of DDSA is tuple (s, α) of control state s and assignment α to data variables V
- \blacktriangleright abstract state is tuple (s, φ) of control state s and formula φ with free variables V
- $\blacktriangleright \quad (s, \alpha) \text{ matches } (s, \varphi) \text{ if } \alpha \models \varphi$



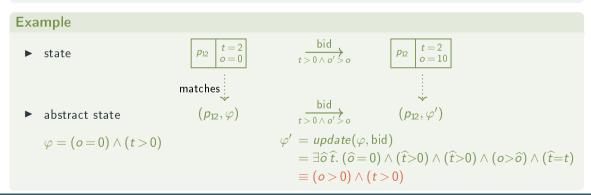
- \blacktriangleright state of DDSA is tuple (s, α) of control state s and assignment α to data variables V
- abstract state is tuple (s, φ) of control state s and formula φ with free variables V
- ▶ (*s*, α) matches (*s*, φ) if $\alpha \models \varphi$



- \blacktriangleright state of DDSA is tuple (s, α) of control state s and assignment α to data variables V
- \blacktriangleright abstract state is tuple (s, arphi) of control state s and formula arphi with free variables V
- ▶ (*s*, α) matches (*s*, φ) if $\alpha \models \varphi$



- \blacktriangleright state of DDSA is tuple (s, α) of control state s and assignment α to data variables V
- \blacktriangleright abstract state is tuple (s, arphi) of control state s and formula arphi with free variables V
- ▶ (*s*, α) matches (*s*, φ) if $\alpha \models \varphi$



for formula φ and transition $\textbf{\textit{a}}$ in DDSA

$$update(\varphi, a) = \exists \widehat{V}. (\varphi(\widehat{V}) \land guard_{a}(\widehat{V}, V) \land \bigwedge_{v \notin write(a)} \widehat{v} = v)$$

Definition (Constraint graph)

for formula φ and transition $\textbf{\textit{a}}$ in DDSA

$$update(\varphi, a) = \exists \widehat{V}. (\varphi(\widehat{V}) \land guard_{a}(\widehat{V}, V) \land \bigwedge_{v \notin write(a)} \widehat{v} = v)$$

Definition (Constraint graph)

• initial node is
$$(s_0, \varphi_0)$$
, with $\varphi_0 = \bigwedge_{v \in V} v = \alpha_0(v)$

for formula φ and transition a in DDSA

$$update(\varphi, a) = \exists \widehat{V}. (\varphi(\widehat{V}) \land guard_{a}(\widehat{V}, V) \land \bigwedge_{v \notin write(a)} \widehat{v} = v)$$

Definition (Constraint graph)

- initial node is (s_0, φ_0) , with $\varphi_0 = \bigwedge_{v \in V} v = \alpha_0(v)$
- for every node (s, φ)

for formula φ and transition a in DDSA

$$update(\varphi, a) = \exists \widehat{V}. (\varphi(\widehat{V}) \land guard_{a}(\widehat{V}, V) \land \bigwedge_{v \notin write(a)} \widehat{v} = v)$$

Definition (Constraint graph)

- initial node is (s_0, φ_0) , with $\varphi_0 = \bigwedge_{v \in V} v = \alpha_0(v)$
- ▶ for every node (s, φ) where $s \xrightarrow{a} s'$

for formula φ and transition a in DDSA

$$update(\varphi, a) = \exists \widehat{V}. (\varphi(\widehat{V}) \land guard_{a}(\widehat{V}, V) \land \bigwedge_{v \notin write(a)} \widehat{v} = v)$$

Definition (Constraint graph)

- initial node is (s_0, φ_0) , with $\varphi_0 = \bigwedge_{v \in V} v = \alpha_0(v)$
- for every node (s, φ) where $s \xrightarrow{a} s'$ and $update(\varphi, a)$ is satisfiable

for formula φ and transition a in DDSA

$$update(\varphi, a) = \exists \widehat{V}. (\varphi(\widehat{V}) \land guard_{a}(\widehat{V}, V) \land \bigwedge_{v \notin write(a)} \widehat{v} = v)$$

Definition (Constraint graph)

- ▶ initial node is (s_0, φ_0) , with $\varphi_0 = \bigwedge_{v \in V} v = \alpha_0(v)$
- for every node (s, φ) where s → s' and update(φ, a) is satisfiable there is node (s', φ') such that φ' ≡ update(φ, a)

for formula φ and transition a in DDSA

$$update(\varphi, a) = \exists \widehat{V}. (\varphi(\widehat{V}) \land guard_{a}(\widehat{V}, V) \land \bigwedge_{v \notin write(a)} \widehat{v} = v)$$

Definition (Constraint graph)

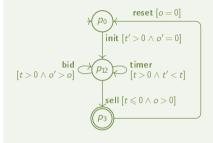
- initial node is (s_0, φ_0) , with $\varphi_0 = \bigwedge_{v \in V} v = \alpha_0(v)$
- for every node (s, φ) where s → s' and update(φ, a) is satisfiable there is node (s', φ') such that φ' ≡ update(φ, a), and edge (s, φ) → (s', φ')

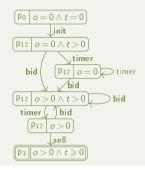
for formula φ and transition a in DDSA

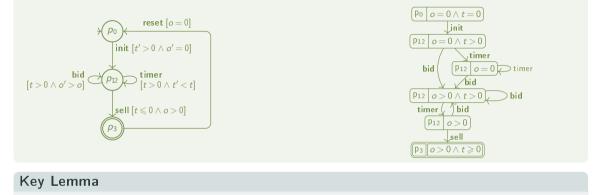
$$update(\varphi, a) = \exists \widehat{V}. (\varphi(\widehat{V}) \land guard_{a}(\widehat{V}, V) \land \bigwedge_{v \notin write(a)} \widehat{v} = v)$$

Definition (Constraint graph)

- initial node is (s_0, φ_0) , with $\varphi_0 = \bigwedge_{v \in V} v = \alpha_0(v)$
- for every node (s, φ) where s → s' and update(φ, a) is satisfiable there is node (s', φ') such that φ' ≡ update(φ, a), and edge (s, φ) → (s', φ')
- $(s,...) \in N$ is final if s is final in DDSA



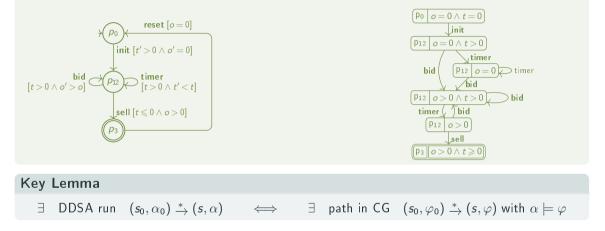




 $\exists DDSA run (s_0, \alpha_0) \xrightarrow{*} (s, \alpha) \iff \exists path in CG (s_0, \varphi_0) \xrightarrow{*} (s, \varphi) with \alpha \models \varphi$

Key Lemma

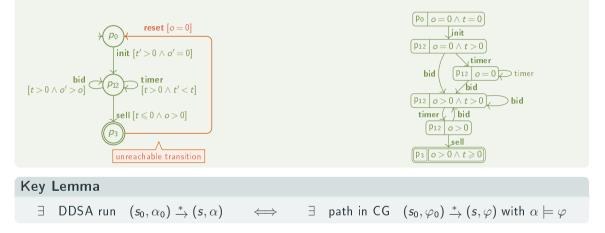
 $\exists DDSA run (s_0, \alpha_0) \xrightarrow{*} (s, \alpha) \iff \exists path in CG (s_0, \varphi_0) \xrightarrow{*} (s, \varphi) with \alpha \models \varphi$



Observation

control state or transition of DDSA are reachable iff they appear in the constraint graph

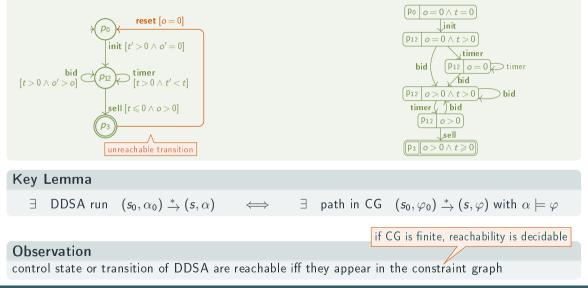
Example (Constraint graph for auction model)



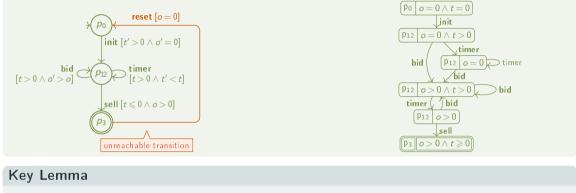
Observation

control state or transition of DDSA are reachable iff they appear in the constraint graph

Example (Constraint graph for auction model)



Example (Constraint graph for auction model)



 $\exists DDSA run (s_0, \alpha_0) \xrightarrow{*} (s, \alpha) \iff \exists path in CG (s_0, \varphi_0) \xrightarrow{*} (s, \varphi) with \alpha \models \varphi$

Caveat

constraint graph can be infinite

formulas in CG are history constraints:

 $\exists \dots \exists$ (conjunctions of renamed transition guards)

Definition (Finite summary)

DDSA has finite summary if set of history constraints is finite

Definition (Finite summary)

DDSA has finite summary if set of history constraints is finite

abstract decidability condition

Definition (Finite summary) DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary

Definition (Finite summary)

DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary

- ► restrict shape of transition guards:
 - ▶ variable-to-variable/constant comparisons over \mathbb{Q} : x < y, $x \ge \frac{1}{2}$, y = 0 [Demri & de Souza 2006]

Definition (Finite summary)

DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary

- restrict shape of transition guards:
 - ▶ variable-to-variable/constant comparisons over \mathbb{Q} : x < y, $x \ge \frac{1}{2}$, y = 0 [Demri & de Souza 2006]

 $\begin{bmatrix} t > 0 \land o' > o \end{bmatrix}$

timer

 $[t \leq 0 \land o > 0]$

 $\begin{bmatrix} t > 0 \land t' < t \end{bmatrix}$

Definition (Finite summary)

DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary

[Felli, Montali & W, AAAI 2022]

- ▶ restrict shape of transition guards:
 - ▶ variable-to-variable/constant comparisons over \mathbb{Q} : x < y, $x \ge \frac{1}{2}$, y = 0 [Demri & de Souza 2006]
 - integer periodicity constraints over \mathbb{Z} : x = y, x < 3, $y \equiv_5 3$

[Demri & de Souza 2006] [Demri 2006, Gascon 2009]

Definition (Finite summary)

DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary

[Felli, Montali & W, AAAI 2022]

- ▶ restrict shape of transition guards:
 - ▶ variable-to-variable/constant comparisons over \mathbb{Q} : x < y, $x \ge \frac{1}{2}$, y = 0 [Demri & de Souza 2006]
 - integer periodicity constraints over \mathbb{Z} : x = y, x < 3, $y \equiv_5 3$
 - gap-order constraints: $x y \ge 2$

[Demri 2006, Gascon 2009] [Cerans 1995, Bozzelli & Pinchinat 2014]

Definition (Finite summary)

DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary

- ▶ restrict shape of transition guards:
 - ▶ variable-to-variable/constant comparisons over \mathbb{Q} : x < y, $x \ge \frac{1}{2}$, y = 0 [Demri & de Souza 2006]
 - integer periodicity constraints over \mathbb{Z} : x = y, x < 3, $y \equiv_5 3$
 - gap-order constraints: $x y \ge 2$ [Cerans 1995, Bozzelli & Pinchinat 2014]
- restrict control flow:
 - ▶ feedback freedom

[Damaggio, Deutsch & Vianu 2012]

[Felli, Montali & W. AAAI 2022]

[Demri 2006, Gascon 2009]

Definition (Finite summary)

DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary

- ▶ restrict shape of transition guards:
 - ▶ variable-to-variable/constant comparisons over \mathbb{Q} : x < y, $x \ge \frac{1}{2}$, y = 0 [Demri & de Souza 2006]
 - integer periodicity constraints over \mathbb{Z} : x = y, x < 3, $y \equiv_5 3$
 - gap-order constraints: $x y \ge 2$
- restrict control flow:
 - ▶ feedback freedom
 - bounded memory

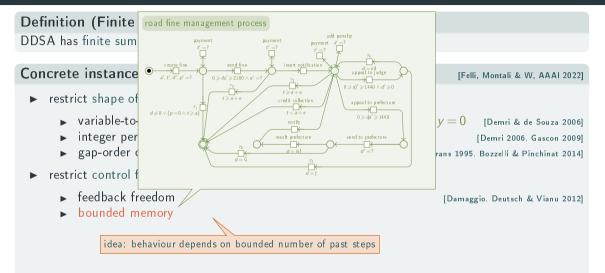
idea: behaviour depends on bounded number of past steps

[Damaggio, Deutsch & Vianu 2012]

[Cerans 1995. Bozzelli & Pinchinat 2014]

[Felli, Montali & W, AAAI 2022]

[Demri 2006, Gascon 2009]



Definition (Finite summary)

DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary

- restrict shape of transition guards:
 - ▶ variable-to-variable/constant comparisons over \mathbb{Q} : x < y, $x \ge \frac{1}{2}$, y = 0 [Demri & de Souza 2006]
 - integer periodicity constraints over \mathbb{Z} : x = y, x < 3, $y \equiv_5 3$
 - gap-order constraints: $x y \ge 2$ [Cerans 1995, Bozzelli & Pinchinat 2014]
- restrict control flow:
 - ▶ feedback freedom
 - bounded memory
- ▶ DDSA can be decomposed into subsystems that have finite summary
 - ▶ into sequential process parts
 - ▶ by splitting variables

[Damaggio, Deutsch & Vianu 2012]

[Felli, Montali & W, AAAI 2022]

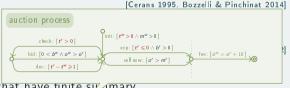
[Demri 2006, Gascon 2009]

Definition (Finite summary)

DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary

- ▶ restrict shape of transition guards:
 - ▶ variable-to-variable/constant comparisons over \mathbb{Q} : x < y, $x \ge \frac{1}{2}$, y = 0 [Demri & de Souza 2006]
 - integer periodicity constraints over \mathbb{Z} : x = y, x < 3, $y \equiv_5 3$
 - gap-order constraints: $x y \ge 2$
- restrict control flow:
 - ▶ feedback freedom
 - bounded memory
- DDSA can be decomposed into subsystems that have finite sy imary
 - ▶ into sequential process parts
 - ▶ by splitting variables

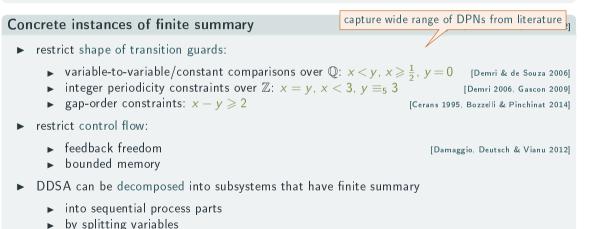


[Felli, Montali & W, AAAI 2022]

[Demri 2006, Gascon 2009]

Definition (Finite summary)

DDSA has finite summary if set of history constraints is finite



Outline

given DDSA and LTL_f formula ψ with arithmetic constraints:

constraint | control state | $\psi \land \psi$ | $\psi \lor \psi$ | $\langle action \rangle \psi$ | X ψ | F ψ | G ψ | $\psi \lor \psi$ is there a witness run of DDSA that satisfies ψ ?

Linear-Time Model Checking

evaluated over finite traces

Verification problem: Compliance

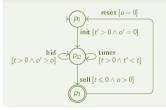
given DDSA and $\mathsf{LTL}_{\mathbf{f}}$ formula ψ with arithmetic constraints:

 $\textit{constraint} \mid \textit{control state} \mid \psi \land \psi \mid \psi \lor \psi \mid \langle \textit{action} \rangle \psi \mid X \psi \mid F \psi \mid G \psi \mid \psi \cup \psi$ is there a witness run of DDSA that satisfies ψ ?

given DDSA and $\mathsf{LTL}_{\mathit{f}}$ formula ψ with arithmetic constraints:

constraint | control state | $\psi \land \psi$ | $\psi \lor \psi$ | $\langle action \rangle \psi$ | $X \psi$ | $F \psi$ | $G \psi$ | $\psi \cup \psi$ is there a witness run of DDSA that satisfies ψ ?

Example

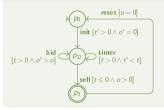


► $F((o=100) \land G(p_3 \rightarrow o \neq 100))$: witness exists it is possible that bid of $100 \in$ does not win

given DDSA and LTL $_{f}$ formula ψ with arithmetic constraints:

constraint | control state | $\psi \land \psi$ | $\psi \lor \psi$ | $\langle action \rangle \psi$ | $X \psi$ | $F \psi$ | $G \psi$ | $\psi \cup \psi$ is there a witness run of DDSA that satisfies ψ ?

Example

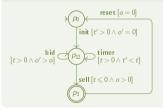


- ► $F((o=100) \land G(p_3 \rightarrow o \neq 100))$: witness exists it is possible that bid of $100 \in$ does not win
- ► F (⟨bid⟩⟨sell⟩⊤): no witness exists it is possible that a sell happens right after a bid

given DDSA and LTL $_{f}$ formula ψ with arithmetic constraints:

constraint | control state | $\psi \land \psi$ | $\psi \lor \psi$ | $\langle action \rangle \psi$ | $X \psi$ | $F \psi$ | $G \psi$ | $\psi \cup \psi$ is there a witness run of DDSA that satisfies ψ ?

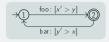
Example



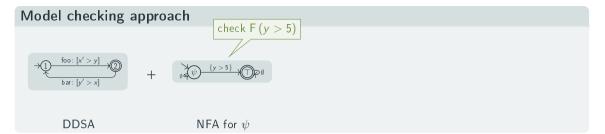
- ► $F((o=100) \land G(p_3 \rightarrow o \neq 100))$: witness exists it is possible that bid of $100 \in$ does not win
- ► F (⟨bid⟩⟨sell⟩⊤): no witness exists it is possible that a sell happens right after a bid

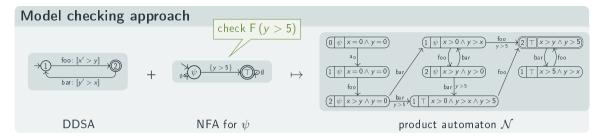
Fact

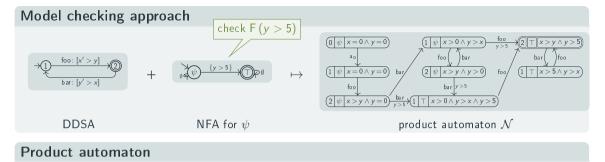
can construct finite automaton (NFA) accepting exactly those runs that satisfy LTL_f property



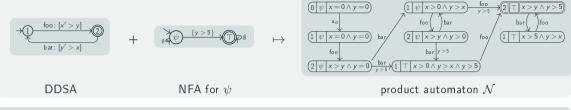
DDSA





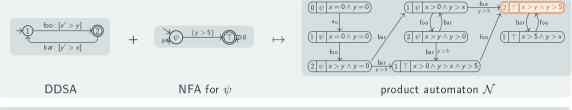


nodes are triples (DDSA state, NFA state, formula)



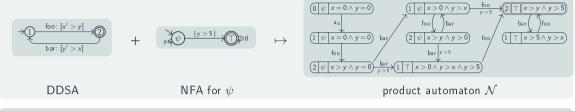
Product automaton

- nodes are triples (DDSA state, NFA state, formula)
- ▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps



Product automaton

- nodes are triples (DDSA state, NFA state, formula)
- ▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps
- ▶ final nodes are those that combine final DDSA and NFA state



Product automaton

- nodes are triples (DDSA state, NFA state, formula)
- ▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps
- ▶ final nodes are those that combine final DDSA and NFA state

Theorem

 \blacktriangleright product automaton has final node iff DDSA admits witness for ψ



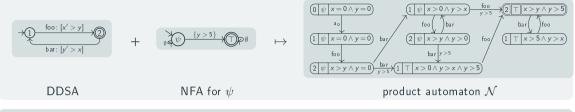
Product automaton

- nodes are triples (DDSA state, NFA state, formula)
- ▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps
- final nodes are those that combine final DDSA and NFA state

Theorem

can use SMT solver to extract witness from accepting path

 \blacktriangleright product automaton has final node iff DDSA admits witness for ψ



Product automaton

- nodes are triples (DDSA state, NFA state, formula)
- ▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps
- ▶ final nodes are those that combine final DDSA and NFA state

Theorem

- \blacktriangleright product automaton has final node iff DDSA admits witness for ψ
- \blacktriangleright LTL_f model checking is decidable if DDSA has finite summary with respect to ψ

Definition

DPN is data-aware sound if

Definition

DPN is data-aware sound if

1 from any reachable state, a final state can be reached

Definition

DPN is data-aware sound if

- 1 from any reachable state, a final state can be reached
- **2** termination is clean (no reachable marking *M* is such that $M \supset M_F$)

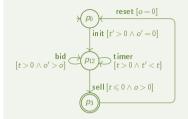
Data-aware Soundness

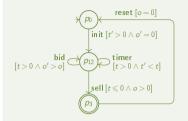
Definition

DPN is data-aware sound if

- 1 from any reachable state, a final state can be reached
- 2 termination is clean (no reachable marking M is such that $M \supset M_F$)
- 3 all transitions are reachable

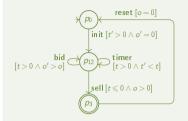
Example (Auction)





not data-aware sound because

► transition **reset** is unreachable



not data-aware sound because

- ► transition **reset** is unreachable
- ► deadlocks exist, e.g. after $P_0 | \substack{t=0 \ o=0} \longrightarrow P_{12} | \substack{t=1 \ o=0} \longrightarrow P_{12} | \substack{t=0 \ o=0} \u P_{12} | \substack{t=0 \ o=0} \u$

DPN is data-aware sound if

- 1 from any reachable state, a final state can be reached
- 2 termination is clean (no reachable marking M is such that $M \supset M_F$)
- 3 all transitions are reachable

can be checked on corresponding DDSA

2

DPN is data-aware sound if

- 1 from any reachable state, a final state can be reached
 - termination is clean (no reachable marking M is such that $M \supset M_F$)
- 3 all transitions are reachable

Soundness checking approach

▶ can check 2 and 3 directly on CG

can be checked on corresponding DDSA

DPN is data-aware sound if

- 1 from any reachable state, a final state can be reached
- 2 termination is clean (no reachable marking M is such that $M \supset M_F$)
- 3 all transitions are reachable

Soundness checking approach

- ▶ can check 2 and 3 directly on CG
- ▶ for **1**: for each non-final CG node (s, φ) :

can be checked on corresponding DDSA

DPN is data-aware sound if

- 1 from any reachable state, a final state can be reached
- 2 termination is clean (no reachable marking M is such that $M \supset M_F$)
- 3 all transitions are reachable

Soundness checking approach

- ▶ can check 2 and 3 directly on CG
- ▶ for **1**: for each non-final CG node (s, φ) :
 - compute CG_s starting from s and unknown initial values V_0

can be checked on corresponding DDSA

DPN is data-aware sound if

- 1 from any reachable state, a final state can be reached
- $_{2}$ termination is clean (no reachable marking M is such that $M \supset M_{F})$
- 3 all transitions are reachable

Soundness checking approach

- can check 2 and 3 directly on CG
- ▶ for **1**: for each non-final CG node (s, φ) :
 - \blacktriangleright compute CG_s starting from s and unknown initial values V₀
 - extract formula reach_final(s) expressing conditions on V₀ that guarantee reachability of final state from s

can be checked on corresponding DDSA

DPN is data-aware sound if

- 1 from any reachable state, a final state can be reached
- $_{2}$ termination is clean (no reachable marking M is such that $M \supset M_{F})$
- 3 all transitions are reachable

Soundness checking approach

- can check 2 and 3 directly on CG
- ▶ for **1**: for each non-final CG node (s, φ) :
 - \blacktriangleright compute CG_s starting from s and unknown initial values V₀
 - extract formula reach_final(s) expressing conditions on V₀ that guarantee reachability of final state from s
 - $\varphi \models reach_final(s)$ iff final state is always reachable from (s, φ)

can be checked on corresponding DDSA

DPN is data-aware sound if

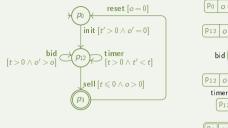
- 1 from any reachable state, a final state can be reached
- 2 termination is clean (no reachable marking M is such that $M \supset M_F)$
- 3 all transitions are reachable

Soundness checking approach

- ▶ can check 2 and 3 directly on CG
- ▶ for **1**: for each non-final CG node (s, φ) :
 - compute CG_s starting from s and unknown initial values V_0
 - extract formula reach_final(s) expressing conditions on V₀ that guarantee reachability of final state from s
 - $\varphi \models reach_final(s)$ iff final state is always reachable from (s, φ)

can be checked on corresponding DDSA

if DDSA has finite summary, data-aware soundness is decidable

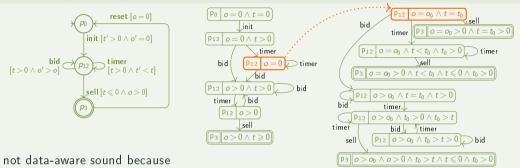


 $\begin{array}{c|c} \hline P0 & o = 0 \land t = 0 \\ \hline \\ \hline \\ p12 & o = 0 \land t > 0 \\ \hline \\ p12 & o = 0 \land t > 0 \\ \hline \\ p12 & o = 0 \land t > 0 \\ \hline \\ p12 & o > 0 \land t > 0 \\ \hline \\ p12 & o > 0$

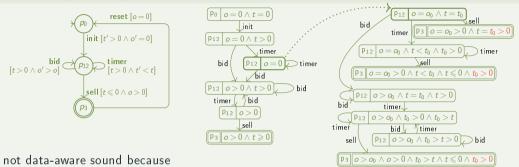
not data-aware sound because

- ► transition **reset** is unreachable
- ► deadlocks exist, e.g. after $P_0 | \stackrel{t=0}{\xrightarrow{o=0}}$

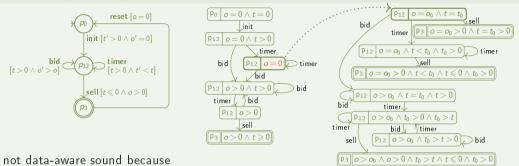
$$\xrightarrow{\text{init}} P_{12} \xrightarrow{t=1} \xrightarrow{\text{timer}} P_{12} \xrightarrow{t=0} o = 0$$



- ► transition **reset** is unreachable
- deadlocks exist, e.g. after $P_0 | \begin{array}{c} t = 0 \\ o = 0 \end{array} \xrightarrow{\text{init}} P_{12}$

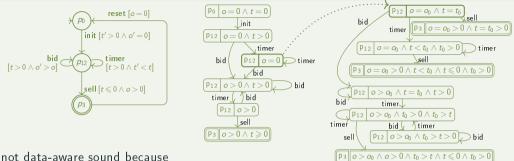


- ► transition **reset** is unreachable
- ► deadlocks exist, e.g. after $p_0 \downarrow t=0 \atop o=0 \xrightarrow{\text{init}} p_{12} \downarrow t=1 \atop o=0 \xrightarrow{\text{timer}} p_{12} \downarrow t=0 \atop o=0 \xrightarrow{\text{timer}} p_{12} \downarrow t=0 \atop o=0$ have reach_final(p_{12}) = (t > 0)



► transition **reset** is unreachable

► deadlocks exist, e.g. after $p_0 \xrightarrow{t=0}_{o=0} \xrightarrow{\text{init}} p_{12} \xrightarrow{t=1}_{o=0} \xrightarrow{\text{timer}} p_{12} \xrightarrow{t=0}_{o=0}$ have reach_final(p_{12}) = (t > 0), and (o = 0) $\not\models$ (t > 0)



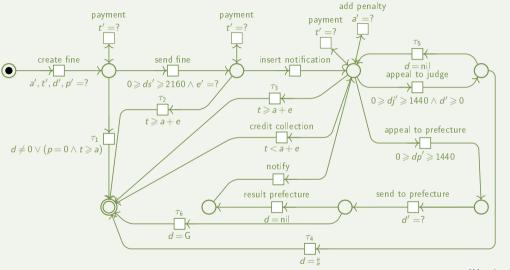
lot data-aware sound because

- transition reset is unreachable
- ► deadlocks exist, e.g. after $|p_0| \stackrel{t=0}{\underset{o=0}{\overset{init}{\overset{o=0}{\overset{o}$

Branching-time model checking

use similar approach to obtain CTL* model checking procedure

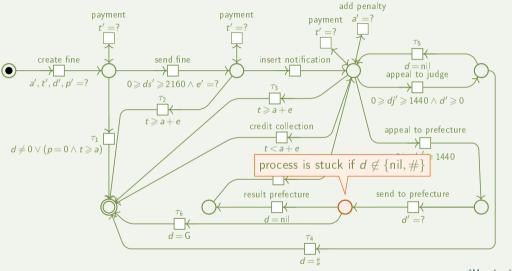
Example (Road fine management process)



[Mannhardt et al 2016]

Example (Road fine management process)

not data-aware sound

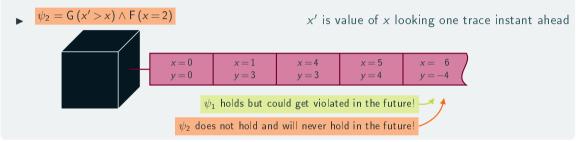


[Mannhardt et al 2016]

Monitoring Arithmetic Temporal Properties

given a trace of values, check current and possible future satisfaction of LTL_f properties like

 $\psi_1 = (y \ge 0) \ \mathsf{U} \ (x > y \land \mathsf{G} \ (x > y))$



Monitoring Arithmetic Temporal Properties

given a trace of values, check current and possible future satisfaction of LTL_f properties like



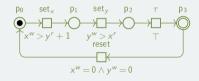
Results

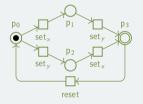
- developed monitoring procedure
- ▶ use finite summary approach to identify classes of properties where problem is decidable

[Felli, Montali, Patrizi & W, AAAI 2023]

Verification problem

given two DPNs, do they have the same sets of configurations, and/or the same language?





Results

- can be determined using constraint graphs
- ► decidable for finite summary systems

Implementation

Arithmetic DDS Analyzer (ada)

- ▶ input DPN (+ LTL_f or CTL_f property)
- ► checks for decidability conditions, visualizes CG/product automaton
- ▶ performs LTL_f , CTL_f^* model checking, soundness checking, and monitoring
- ▶ computes witness/counterexample
- written in Python, using Z3/Yices/CVC5 for SMT solving and quantifier elimination https://ltl.adatool.dev https://soundness.adatool.dev https://ctlstar.adatool.dev

Implementation

Arithmetic DDS Analyzer (ada)

- ▶ input DPN (+ LTL_f or CTL_f property)
- ► checks for decidability conditions, visualizes CG/product automaton
- \blacktriangleright performs LTL_f, CTL_f model checking, soundness checking, and monitoring
- ▶ computes witness/counterexample
- written in Python, using Z3/Yices/CVC5 for SMT solving and quantifier elimination https://ltl.adatool.dev https://soundness.adatool.dev https://ctlstar.adatool.dev

Experiments

- ▶ about 60 DPNs (20 from literature, 40 artificial)
- ▶ all DPNs from literature are in some decidable class for LTL_f (but not CTL_f^*) model checking

Implementati					- la slas	1121	
	process	property	sat	time	checks	$ \mathcal{B} $	$ \mathcal{N}_{\mathcal{B},b}^{\psi} $
	road fines (1)	no deadlock	×	7.0s	8161	9	2052
Arithmetic DD		$AG\ (p_7 \to E\ F\ end)$	 ✓ 	7.6s	7655		1987
Antimetic DD	road fines (2)	no deadlock	 ✓ 	15m27s	247563	9	4927
		$AG (p_7 \rightarrow EFend)$	\checkmark	16m7s	246813		4927
input DPN (road fines (3)	no deadlock	×	9s	9179	9	1985
		$AG (p_7 \rightarrow EFend)$	\checkmark	6.6s	6382		1597
checks for d		$EF\left(dS\geqslant 2160\right)$	×	11.5s	17680		1280
	hospital billing	no deadlock	\checkmark	20m59s	1234928	17	23147
performs LT		$EF(p16 \land \neg \mathit{closed})$	\checkmark	10m20s	669379		10654
p ponorino En	sepsis (1)	no deadlock	\checkmark	1m36s	139	301	44939
computes w		$AG (sink \to t_{tr} < t_{ab})$	×	30.1s	170		22724
		$AG (sink \rightarrow t_{tr} + 60 \ge t_{ab})$	\checkmark	32s	153		22538
written in P	sepsis (2)	no deadlock	\checkmark	7m24	4524	301	161242
		A $(\neg lacticAcid \cup \langle diagnostic \rangle \top)$	\checkmark	3m53s	5734		74984
1	board: register	no deadlock	\checkmark	1.4s	12	7	27
	board: transfer	no deadlock	\checkmark	1.4s	27	7	51
	board: discharge	no deadlock	\checkmark	1.5s	25	6	67
	-	$AG\;(p_2\;\land\;o_{1}{=}207\;\rightarrow\;AG\;o_{1}{=}207)$	\checkmark	1.5s	94		91
		$AG(EF\langletra\rangle\top\wedgeEF\langlehis\rangle\top)$	\checkmark	1.5s	27		98
Experiments		$\neg E(F\langle tra \rangle \top \land F \langle his \rangle \top)$	\checkmark	1.4s	56		43
Experimento	credit approval	no deadlock	\checkmark	1.7s	470	6	230
		$AG \left(\langle openLoan \rangle \top \to \mathit{ver} \land \mathit{dec} \right)$	\checkmark	13.2s	14156		645
🔹 🕨 about 60 DF		$A\left(F\left(\mathit{ver} \land \mathit{dec}\right) \to F\left< openLoan \right> \top\right)$	×	3.7s	3128		316
	package handling	no deadlock	\checkmark	2.7ss	1025	16	693
all DPNs frd		no deadlock (au_1)	\checkmark	2.5s	1079		398
		$\psi_{k1} = EF \langle fetch angle op$	×	2.6s	850		343
		$\psi_{k2} = EF \langle \tau_{\boldsymbol{6}} \rangle \top$	×	2.4s	875		336
	auction	no deadlock	×	10.8s	1683	5	186
		$EF(sold\wedged>0\wedgeo\leqslant t)$	×	6.4s	1180		79
		$EF\;(b{=}1\wedgeo>t\wedgeF\;(sold\wedgeb>1))$	\checkmark	26.5s	4000		263

Conclusion

Summary

- for Data Petri nets with arithmetic constraints: verification procedures for LTL_f, CTL_f, data-aware soundness
- ► decision procedure if DPN satisfies finite summary property: new decidability results
- ▶ implemented and tested on processes from BPM

Conclusion

Summary

- for Data Petri nets with arithmetic constraints: verification procedures for LTL_f, CTL^{*}_f, data-aware soundness
- ► decision procedure if DPN satisfies finite summary property: new decidability results
- ▶ implemented and tested on processes from BPM

Take-home message

- ▶ finite constraint graphs are powerful tool for verification
- ▶ many relevant verification tasks are decidable for "practical" Data Petri nets

Conclusion

Summary

- for Data Petri nets with arithmetic constraints: verification procedures for LTL_f, CTL^{*}_f, data-aware soundness
- ► decision procedure if DPN satisfies finite summary property: new decidability results
- ▶ implemented and tested on processes from BPM

Take-home message

- finite constraint graphs are powerful tool for verification
- many relevant verification tasks are decidable for "practical" Data Petri nets

Future work

- ▶ further SMT theories, e.g. allow guards to refer to database
- discover more expressive transition guards for DPNs :)

... all of this is the result of a fun collaboration with

Marco Montali Paolo Felli Fabio Patrizi

Bibliography: DPN Toolbox

P. Felli, M. Montali, S. Winkler Linear-time verification of data-aware dynamic systems with arithmetic AAAI-36, 5642-5650, 2022

P. Felli, M. Montali, S. Winkler Soundness of data-aware processes with arithmetic conditions CAiSE-34, LNCS 13295, 389-406, 2022

P. Felli, M. Montali, S. Winkler CTL* model checking for data-aware dynamic systems with arithmetic IJCAR-11, LNCS 13385, 36–56, 2022

P. Felli, M. Montali, F. Patrizi, S. Winkler Monitoring Arithmetic Temporal Properties on Finite Traces AAAI-37, 6346-6354, 2023

M. Montali, S. Winkler Equivalence of Data Petri Nets with Arithmetic FM-BPM 2023, to appear

Bibliography: Related Work

F. Mannhardt

Multi-perspective Process Mining

Ph.D. thesis, Technical University of Eindhoven, 2018

F. Mannhardt, M. de Leoni, H. A. Reijers, W. van der Aalst Decision mining revisited: Discovering overlapping rules CAiSE-28, LNCS 9694, 377-392, 2016